系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (4): 1057-1068.doi: 10.12305/j.issn.1001-506X.2021.04.24
收稿日期:
2020-06-22
出版日期:
2021-03-25
发布日期:
2021-03-31
通讯作者:
张翔
E-mail:Duronghua1995@126.com;zhxiang2002@126.com;cnwho@mail.njust.edu.cn
作者简介:
杜荣华(1995-), 男, 博士研究生, 主要研究方向为微小卫星在轨自主相对导航技术。E-mail: 基金资助:
Ronghua DU(), Xiang ZHANG*(), Wenhe LIAO()
Received:
2020-06-22
Online:
2021-03-25
Published:
2021-03-31
Contact:
Xiang ZHANG
E-mail:Duronghua1995@126.com;zhxiang2002@126.com;cnwho@mail.njust.edu.cn
摘要:
针对线性化的测量模型和相对运动模型会导致仅测角相对导航星间距离不可观测的问题, 提出一种快速仅测角相对导航初始相对轨道确定(initial relative orbit determination, IROD)方法。首先, 采用相对轨道根数(relative orbit elements, ROE)建立非线性相对运动模型, 该模型可以将星间距离和相对轨道形状进行解耦。然后, 在线性理论获得的共线性解附近系统地改变星间距离大小, 并执行一系列最小二乘拟合, 随后采用二分法或牛顿迭代法快速在全局范围内找到最小拟合残差的最优解。最后, 通过搭建的半物理仿真平台对该方法在4种轨道场景中的性能进行仿真测试, 验证了所提方法的有效性。
中图分类号:
杜荣华, 张翔, 廖文和. 快速仅测角相对导航初始相对轨道确定方法[J]. 系统工程与电子技术, 2021, 43(4): 1057-1068.
Ronghua DU, Xiang ZHANG, Wenhe LIAO. Fast initial relative orbit determination method of angles-only relative navigation[J]. Systems Engineering and Electronics, 2021, 43(4): 1057-1068.
表1
主要仿真参数"
参数 | 变量 | 仿真值 |
空间目标初始轨道根数 | (a, e, i, Ω, ω, M) | (6 878.137 km, 0, 40°, 120°, 0°, 50°) |
初始ROE (场景1) | (aδa, aδex, aδey, aδix, aδiy, aδλ) | (0, 0.5, 0, -0.5, 0, -30)km |
初始ROE (场景2) | (aδa, aδex, aδey, aδix, aδiy, aδλ) | (-0.15, 0.3, 0, -0.3, 0, -20)km |
初始ROE (场景3) | (aδa, aδex, aδey, aδix, aδiy, aδλ) | (0, 0, -0.2, 0, 0.2, -5)km |
初始ROE (场景4) | (aδa, aδex, aδey, aδix, aδiy, aδλ) | (0, 0, 0, 0, 0, -0.5)km |
相机测量误差标准差 | σα=σε | 18″ |
相机测量偏差标准差 | σb, α=σb, ε | 5″ |
姿态测量误差标准差 | (σatt, off-axis, σatt, roll) | (6, 40)″ |
1 | RISTIC B , ARULAMPALAM M S . Tracking a manoeuvering target using angle-only measurements: algorithms and perfor-mance[J]. Signal Processing, 2003, 83 (2): 1223- 1238. |
2 | 万卫星, 魏勇, 郭正堂, 等. 从深空探测大国迈向行星科学强国[J]. 中国科学院院刊, 2019, 34 (7): 748- 755. |
WAN W X , WEI Y , GUO Z T , et al. Toward a power of planetary science from a gaint of deep space exploration[J]. Bulletin of Chinese Academy of Science, 2019, 34 (7): 748- 755. | |
3 | ZHANG Y , WANG X Y , XI K W , et al. Impact analysis of solar irradiance change on precision orbit determination of navigation satellites[J]. Transaction of Nanjing University of Aeronautics and Astronautics, 2019, 36 (6): 889- 901. |
4 |
WANG Y , WANG X G , CUI N G . Robust decentralised state estimation for formation flying spacecraft[J]. IET Radar, Sonar and Navigation, 2019, 13 (5): 814- 823.
doi: 10.1049/iet-rsn.2018.5348 |
5 |
LIU R X , LIU M , LIU Y . Nonlinear optimal tracking control of spacecraft formation flying with collision avoidance[J]. Transaction of the Institute of Measurement and Control, 2019, 41 (4): 889- 899.
doi: 10.1177/0142331218773506 |
6 | RAJA C. Autonomous orbital rendezvous using angles-only navi-gation[D]. Logan: Utah State University, 2001. |
7 | DEHANN F, BRENT E T, STEVE U, et al. Vision-based rela-tive navigation and control for autonomous spacecraft inspection of an unknown object[C]//Proc. of the Guidance, Navigation, and Control and Co-located Conferences, 2013. |
8 |
梁斌, 何英, 邹瑜, 等. ToF相机在空间非合作目标近距离测量中的应用[J]. 宇航学报, 2016, 37 (9): 1080- 1088.
doi: 10.3873/j.issn.1000-1328.2016.09.007 |
LIANG B , HE Y , ZHOU Y , et al. Application of ToF camera in close-range measurement of uncooperative target in space[J]. Journal of Astronautics, 2016, 37 (9): 1080- 1088.
doi: 10.3873/j.issn.1000-1328.2016.09.007 |
|
9 |
GONG B C , LI W , LI S , et al. Angles-only initial relative orbit determination algorithm for noncooperative spacecraft proximity operations[J]. Astrodynamics, 2018, 2 (3): 217- 231.
doi: 10.1007/s42064-018-0022-0 |
10 | GAIAS G , ARDAENS J S . Flight demonstration of autonomous noncooperative rendezvous in low earth orbit[J]. Journal of Gui-dance, Control, and Dynamics, 2018, 41 (6): 1137- 1354. |
11 |
WOFFINDEN D C , GELLER D K . Navigating the road to autonomous orbital rendezvous[J]. Journal of Spacecraft and Rockets, 2007, 44 (4): 898- 909.
doi: 10.2514/1.30734 |
12 | 葛祥雨, 黄杰, 周前祥, 等. 空间站在轨维修操作复杂度评价及试验验证[J]. 北京航空航天大学学报, 2019, 45 (11): 2228- 2236. |
GE X Y , HUANG J , ZHOU Q X , et al. Evaluation of space station on-orbit maintenance operation complexity and its experimental validation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (11): 2228- 2236. | |
13 | DAVID V. Evaluating gooding angles-only orbit determination of space based space surveilliance measurements[C]//Proc. of the 8th US/Russian Space Surveillance Workshop, 2010. |
14 | KEITH L. Space-based relative multitarget tracking[D]. Lola: Missouri University of Science and Technology, 2015. |
15 | PERSSON S , VELDMAN S , BODIN P . PRISMA—A formation flying project in implementation phase[J]. Acta Astronautica, 2009, 65 (9): 1360- 1374. |
16 | CARLSSON A. General control system for both sounding rockets and satellites[C]//Proc. of the 18th ESA Symposium on European Rockets and Balloon Programmes and Related Research, 2007. |
17 | NOTEBORN R, BODIN P, LARSSON R, et al. Flight results from the PRISMA optical line of sight based autonomous rendezvous experiment[C]//Proc. of the 4th International Confe-rence on Spacecraft Formation Flying Missions and Technologies, 2011. |
18 |
D'AMICO S , ARDAENS J S , LARSSON R . Spaceborne autonomous formation-flying experiment on the PRISMA mission[J]. Journal of Guidance, Control, and Dynamics, 2012, 35 (3): 834- 850.
doi: 10.2514/1.55638 |
19 |
D'AMICO S , ARDAENS J S , GAIAS G , et al. Noncooperative rendezvous using angles-only optical navigation: system design and flight results[J]. Journal of Guidance, Control, and Dynamics, 2013, 36 (6): 1576- 1595.
doi: 10.2514/1.59236 |
20 |
FLORIO S D , D'AMICO S , RADICE G . Flight results of precise autonomous orbit keeping experiment on PRISMA mission[J]. Journal of Spacecraft and Rockets, 2013, 50 (3): 662- 674.
doi: 10.2514/1.A32347 |
21 | BODIN P . PRISMA: an in-orbit test bed for guidance, navigation, and control experiments[J]. Journal of Spacecraft and Rockets, 2015, 46 (3): 615- 623. |
22 | GELLER D K . Autonomous orbital rendezvous using angles-only navigation[J]. Massachusetts Institute of Technology, 2012, 30 (5): 1455- 1469. |
23 | GAIAS G , ARDAENS J S . In-orbit experience and lessons learned from the AVANTI experiment[J]. Acta Astronautica, 2018, 1 (42): 1- 11. |
24 | WOFFINDEN D C. Angles-only navigation for autonomous orbital rendezvous[D]. Logan: Utah State University, 2008. |
25 | 龚柏春. 航天器自主交会仅测角相对轨道确定方法研究[D]. 西安: 西北工业大学, 2016. |
GONG B C. Research on angles-only relative orbit determination algorithms for spacecraft autonomous rendezvous[D]. Xi'an: Northwestern Polytechnical University, 2016. | |
26 | PI J, BANG H. Trajectory design for satellite relative angles-only navigation[C]//Proc. of the 9th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, 2012: 747-751. |
27 |
PI J , BANG H . Trajectory design for improving observability of angles-only relative navigation between two satellites[J]. Journal of the Astronautical Sciences, 2014, 61 (4): 391- 412.
doi: 10.1007/s40295-014-0016-y |
28 | JAGAT A, SINCLAIR A. Control of spacecraft relative motion using angles-only navigation[C]//Proc. of the AAS/AIAA Astrodynamics Specialist Conference, 2015. |
29 |
GELLER D K , KLEIN I . Angles-only navigation state observability during orbital proximity operations[J]. Journal of Gui-dance, Control, and Dynamics, 2014, 37 (6): 1976- 1983.
doi: 10.2514/1.G000133 |
30 | SULLIVAN J, KOENIG A, D'AMICO S. Improved maneuver-free approach to angles-only navigation for space rendezvous[C]//Proc. of the 26th AAS/AIAA Space Flight Mechanics Meeting, 2016. |
31 |
GELLER D K , LOVELL T A . Angles-only initial relative orbit determination performance analysis using cylindrical coordinates[J]. The Journal of the Astronautical Sciences, 2017, 64 (1): 72- 96.
doi: 10.1007/s40295-016-0095-z |
32 | 王楷, 陈统, 徐世杰. 基于双视线测量的相对导航方法[J]. 航空学报, 2011, 32 (6): 1084- 1091. |
WANG K , CHEN T , XU S J . Relative navigation method based on dual line-of-sight measurement[J]. Acta Aeronautica Sinica, 2011, 32 (6): 1084- 1091. | |
33 |
刘光明, 廖瑛, 文援兰, 等. 基于双星编队的空间非合作目标联合定轨方法[J]. 宇航学报, 2010, 31 (9): 2095- 2100.
doi: 10.3873/j.issn.1000-1328.2010.09.006 |
LIU G M , LIAO Y , WEN Y L , et al. Two-satellite formation-based non-cooperative space target integrated orbit determination[J]. Journal of Astronautics, 2010, 31 (9): 2095- 2100.
doi: 10.3873/j.issn.1000-1328.2010.09.006 |
|
34 |
WOFFINDEN D C , GELLER D K . Observability criteria for angles-only navigation[J]. IEEE Trans.on Aerospace and Electronic System, 2009, 45 (3): 1194- 1208.
doi: 10.1109/TAES.2009.5259193 |
35 |
ARDAENS J S , GAIAS G . A numerical approach to the pro-blem of angles-only initial relative orbit determination in low earth orbit[J]. Advances in Space Research, 2019, 63, 3884- 3899.
doi: 10.1016/j.asr.2019.03.001 |
36 |
DEBRUIJN F , GILL E , HOW J . Comparative analysis of Cartesian and curvilinear Clohessy-Wiltshire equations[J]. Journal of Aerospace Engineering, Sciences and Applications, 2011, 3 (2): 1- 15.
doi: 10.7446/jaesa.0302.01 |
37 |
GIM D W , ALFRIEND K T . State transition matrix of relative motion for the perturbed noncircular reference orbit[J]. Journal of Guidance, Control, and Dynamics, 2003, 26 (6): 956- 971.
doi: 10.2514/2.6924 |
38 | BROUWER D . Solution of the problem of artificial satellite theory without drag[J]. Astronautical Journal, 1959, 64 (9): 378- 397. |
39 | LYDDANE R H . Small eccentricities or inclinations in the brouwer theory of the artificial satellite[J]. Astronomical Journal, 1963, 68 (8): 555- 558. |
40 |
GAIAS G , D'AMICO S , ARDAENS J S . Angles-only navigation to a noncooperative satellite using relative orbital elements[J]. Journal of Guidance, Control, and Dynamics, 2014, 37 (2): 439- 451.
doi: 10.2514/1.61494 |
41 |
ARDAENS J S , GAIAS G . Flight demonstration of spaceborne real-time angles-only navigation to a noncooperative target in low earth orbit[J]. Acta Astronautica, 2018, 153, 367- 382.
doi: 10.1016/j.actaastro.2018.01.044 |
42 |
GAIAS G , ARDAENS J S , MONTENBRUCK O . Model of J2 perturbed satellite relative motion with time-varying differential drag[J]. Celestial Mechanics and Dynamical Astronomy, 2015, 123 (4): 411- 433.
doi: 10.1007/s10569-015-9643-2 |
43 | MONTENBRUCK O , KIRSCHNER M , D'AMICO S , et al. E/I-vector separation for safe switching of the GRACE formation[J]. Aerospace Science and Technology, 2016, 10 (7): 628- 635. |
44 |
ARDAENS J S , D'AMICO S . Spaceborne autonomous relative control system for dual satellite formations[J]. Journal of Guidance, Control, and Dynamics, 2009, 32 (6): 1859- 1870.
doi: 10.2514/1.42855 |
45 |
ARDAENS J S , D'AMICO S . Nonlinear Kalman filtering for improved angles-only navigation using relative orbital elements[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (9): 2183- 2200.
doi: 10.2514/1.G002719 |
[1] | 蔡保杰, 邵雷. 三段判别域与最小二乘拟合的抗差滤波算法[J]. 系统工程与电子技术, 2021, 43(5): 1346-1353. |
[2] | 万兵, 韩维, 梁勇, 郭放. 舰载机出动离场调度优化算法[J]. 系统工程与电子技术, 2021, 43(12): 3624-3634. |
[3] | 符俊, 蔡洪, 丁智坚. 地球静止轨道-低轨道最优异面转移方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(7): 1439-1444. |
[4] | 金胜, 王峰, 邓振淼, 杨文军. 一种LFM信号相位域快速高精度参数估计算法[J]. Journal of Systems Engineering and Electronics, 2011, 33(2): 264-267. |
[5] | 彭芳, 左继章, 吴军. 基于高斯—牛顿法改进的复合双基地雷达目标空间定位算法[J]. Journal of Systems Engineering and Electronics, 2009, 31(3): 557-559. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||