1 |
刘海颖, 王惠南, 陈志明. 卫星导航原理与应用[M]. 北京: 国防工业出版社, 2013.
|
|
LIU H Y , WANG H N , CHEN Z M . Principle and application of satellite navigation[M]. Beijing: National Defense Industry Press, 2013.
|
2 |
DAUTERMANN T , LUDWIG T , GEISTER R , et al. Extending access to localizer performance with vertical guidance approaches by means of an SBAS to GBAS converter[J]. GPS Solutions, 2020, 24 (2): 37- 40.
doi: 10.1007/s10291-019-0947-7
|
3 |
NIKIFOROV I . From pseudorange overbounding to integrity risk overbounding[J]. Navigation, 2019, 66 (2): 417- 439.
doi: 10.1002/navi.303
|
4 |
LÓPEZ-LAGO M , SERNA J , CASADO R , et al. Present and future of air navigation: PBN operations and supporting technologies[J]. International Journal of Aeronautical and Space Sciences, 2020, 21, 451- 468.
doi: 10.1007/s42405-019-00216-y
|
5 |
Springer handbook of global navigation satellite systems[M]. Springer, 2017.
|
6 |
RTCA DO-245. Minimum aviation system performance standards for the local area augmentation system[S]. Washington D. C: Radio Technical Commission for Aeronautics, 2004.
|
7 |
KANNEMANS H. The generalized extreme value statistical method to determine the GNSS integrity performance[C]//Proc. of the IEEE 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, 2010: 1-8.
|
8 |
FELUX M, LEE J, HOLZAPFEL F. Flight technical error evaluations for GBAS navigation requirement defintion[C]//Proc. of the International Council of the Aeronautical Sciences, 2018.
|
9 |
淡志强, 薛瑞. 基于改进的包络模型的GBAS完好性评估方法[J]. 现代导航, 2014, (6): 18- 23.
|
|
DAN Z Q , XUE R . GBAS Integrity evaluation method based on improved overbound model[J]. Modern Navigation, 2014, (6): 18- 23.
|
10 |
SONG G, GUO X, LI M. The Alpha stable distribution in ocean ambient noise modelling[C]//Proc. of the MATEC Web of Conferences, 2019.
|
11 |
XUE R , WANG Z , ZHU Y . Upper bound estimation of positioning error for ground-based augmentation system[J]. GPS Solutions, 2017, 21 (4): 1781- 1790.
doi: 10.1007/s10291-017-0651-4
|
12 |
RIFE J H , PULLEN S P . The impact of measurement biases on availability for category Ⅲ LAAS[J]. Navigation, 2005, 52 (4): 215- 228.
doi: 10.1002/j.2161-4296.2005.tb00364.x
|
13 |
HU J, SUN Q, SHI X. Differential positioning algorithm for GBAS based on extendedkalman filtering[C]//Proc. of the 13th World Congress on Intelligent Control and Automation, 2018: 296-303.
|
14 |
JIANG Y , MILNER C , MACABIAU C . Code carrier divergence monitoring for dual-frequency GBAS[J]. GPS solutions, 2017, 21 (2): 769- 781.
doi: 10.1007/s10291-016-0567-4
|
15 |
FUJIWARA T , TSUJⅡ T . GBAS availability assessment and modeling of ionospheric scintillation effects[J]. Navigation: Journal of the Institute of Navigation, 2016, 63 (4): 405- 413.
|
16 |
YOON M , LEE J , PULLEN S . Integrity risk evaluation of impact of ionospheric anomalies on GAST D GBAS[J]. Navigation, 2020, 67 (2): 223- 234.
doi: 10.1002/navi.339
|
17 |
BRUCKNER D , VAN GRAAS F , SKIDMORE T . Statistical characterization of composite protection levels for GPS[J]. GPS solutions, 2011, 15 (3): 263- 273.
doi: 10.1007/s10291-010-0188-2
|
18 |
倪育德, 路璐, 刘瑞华. 基于GPS/BDS的陆基增强系统精度和完好性[J]. 中国民航大学学报, 2017, 35 (6): 1- 6.
doi: 10.3969/j.issn.1674-5590.2017.06.001
|
|
NI Y D , LU L , LIU R H . Accuracy and integrity of ground-based augmentation system based on GPS/BDS[J]. Journal of Civil Aviation University Of China, 2017, 35 (6): 1- 6.
doi: 10.3969/j.issn.1674-5590.2017.06.001
|
19 |
DAUTERMANN T , FELUX M , GROSCH A . Approach service type D evaluation of the DLR GBAS test bed[J]. GPS solutions, 2012, 16 (3): 375- 387.
doi: 10.1007/s10291-011-0239-3
|
20 |
LEE J , PULLEN S , ENGE P . Sigma overbounding using a position domain method for the local area augmentaion of GPS[J]. IEEE Trans.on Aerospace and Electronic Systems, 2009, 45 (4): 1262- 1274.
doi: 10.1109/TAES.2009.5310297
|
21 |
NOLAN J . Stable distributions: models for heavy-tailed data[M]. New York: Birkhauser, 2003.
|
22 |
NOLAN J P . Numerical calculation of stable densities and distribution functions[J]. Communications in Statistics. Stochastic models, 1997, 13 (4): 759- 774.
doi: 10.1080/15326349708807450
|
23 |
NADARAJAH S , CHAN S . The exact distribution of the sum of stable random variables[J]. Journal of Computational and Applied Mathematics, 2019, 349, 187- 196.
doi: 10.1016/j.cam.2018.09.044
|
24 |
GUCHHAIT A. Maximum likelihood estimation of clock skew in sparse one-way packet transmissions for machine type communication applications[C]//Proc. of the IEEE International Conference on Communications, 2016.
|
25 |
DUFITINEMA J , PYNNÖNEN S , SOTTINEN T . Maximum likelihood estimators from discrete data modeled by mixed fractional Brownian motion with application to the Nordic stock markets[J]. Communications in Statistics-Simulation and Computation, 2020, (5): 1- 24.
|
26 |
FALLAHGOUL H A , VEREDAS D , FABOZZI F J . Quantile-based inference for tempered stable distributions[J]. Computational Economics, 2019, 53 (1): 51- 83.
doi: 10.1007/s10614-017-9718-0
|
27 |
SZMIGIEL M , GRZESIEK A , WYŁOMAŃSKA A , et al. Stable distribution in application to fixational eye movement description[J]. Optica Applicata, 2019, 49 (2): 365- 377.
|
28 |
ZHU Y , LIU Y , WANG Z , et al. Evaluation of GBAS flight trials based on BDS and GPS[J]. IET Radar, Sonar & Navigation, 2019, 14 (3): 233- 241.
|
29 |
BIBALAN M H, AMINDAVAR H. On parameter estimation of symmetric alpha-stable distribution[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2016: 4328-4332.
|
30 |
GERBETH D , CAAMANO M , CIRCIU M S , et al. Satellite selection in the context of an operational GBAS[J]. Navigation, 2019, 66 (1): 227- 238.
doi: 10.1002/navi.284
|