1 |
LI W, ZOU B, XIN Y, et al. An improved CFAR scheme for man-made target detection in high resolution SAR images[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 2829-2832.
|
2 |
ZHU J , QIU X , PAN Z , et al. Projection shape template-based ship target recognition in TerraSAR-X images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (2): 222- 226.
doi: 10.1109/LGRS.2016.2635699
|
3 |
杨国铮, 禹晶, 肖创柏, 等. 基于形态字典学习的复杂背景SAR图像舰船尾迹检测[J]. 自动化学报, 2017, 43 (10): 1713- 1725.
|
|
YANG G Z , YU J , XIAO C B , et al. Ship wake detection in sar images with complex background using morphological dictionary learning[J]. Acta Automatica Sinica, 2017, 43 (10): 1713- 1725.
|
4 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the Computer Vision and Pattern Recognition, 2014: 580-587.
|
5 |
GIRSHICK R. Fast R-CNN[C]//Proc. of the International Conference on Computer Vision, 2015: 1440-1448.
|
6 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2017, 39 (6): 1137- 1149.
|
7 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proc. of the European Conference on Computer Vision, 2016: 21-37.
|
8 |
LI Z , ZHOU F . FSSD: feature fusion single shot multibox detector[J]. Computer Vision and Pattern Recognition, 2018, 36 (7): 356- 366.
|
9 |
FU C, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[EB/OL]. [2020-07-16]. http://arxiv.org/abs/1701.06659.
|
10 |
REDMON J, DIVVALA S K, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the Computer Vision and Pattern Recognition, 2016: 779-788.
|
11 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proc. of the Computer Vision and Pattern Recognition, 2017: 6517-6525.
|
12 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2020-07-16]. http://arxiv.org/abs/1804.02767.
|
13 |
HUANG L C, YANG Y, DENG Y F, et al. DenseBox: unifying landmark localization with end to end object detection[EB/OL]. [2020-07-16]. http://export.arxiv.org/abs/1509.04874.
|
14 |
TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[EB/OL]. [2020-07-16]. http://arxiv.org/abs/1904.01355, .
|
15 |
LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]//Proc. of the European Conference on Computer Vision, 2018: 765-781.
|
16 |
李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40 (9): 1953- 1959.
|
|
LI J W , QU C W , PENG S J , et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40 (9): 1953- 1959.
|
17 |
苏娟, 杨龙, 黄华, 等. 用于SAR图像小目标舰船检测的改进SSD算法[J]. 系统工程与电子技术, 2020, 42 (5): 1026- 1034.
|
|
SU J , YANG L , HUANG H , et al. Improved SSD algorithm for small-scale SAR ship detection[J]. Systems Engineering and Electronics, 2020, 42 (5): 1026- 1034.
|
18 |
张晓玲, 张天文, 师君, 等. 基于深度分离卷积神经网络的高速高精度SAR舰船检测[J]. 雷达学报, 2019, 8 (6): 841- 851.
|
|
ZHANG X L , ZHANG T W , SHI J , et al. High-speed and high-accurate SAR ship detection based on a depthwise separable convolution neural network[J]. Journal of Radars, 2019, 8 (6): 841- 851.
|
19 |
LIN T, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the Computer Vision and Pattern Recognition, 2017: 936-944.
|
20 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proc. of the Computer Vision and Pattern Recognition, 2016: 770-778.
|
21 |
HE T, ZHANG Z, ZHANG H, et al. Bag of tricks for image classification with convolutional neural networks[C]//Proc. of the Computer Vision and Pattern Recognition, 2019: 558-567.
|
22 |
DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proc. of the International Conference on Computer Vision, 2017: 764-773.
|
23 |
ZHU X, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]//Proc. of the Computer Vision and Pattern Recognition, 2019: 9308-9316.
|
24 |
MA N, ZHANG X, ZHENG H, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proc. of the European Conference on Computer Vision, 2018: 122-138.
|
25 |
LI J, QU C, SHAO J. Ship detection in SAR images based on an improved faster R-CNN[C]//Proc. of the IEEE SAR in Big Data Era: Models, Methods and Applications, 2017: 1-6.
|
26 |
WANG Y , WANG C , ZHANG H , et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11 (7): 765- 769.
doi: 10.3390/rs11070765
|
27 |
MCMAHAN B, STREETER M J. Delay-tolerant algorithms for asynchronous distributed online learning[C]//Proc. of the Neural Information Processing Systems, 2014: 2915-2923.
|
28 |
DUCHI J , HAZAN E , SINGER Y . Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12 (7): 257- 269.
|
29 |
TAN C, SUN F, KONG T, et al. A survey on deep transfer learning[C]//Proc. of the International Conference on Artificial Neural Networks, 2018: 270-279.
|