1 |
金伟, 尚勇. 中国无人机安全监管[J]. 科技导报, 2019, 37 (14): 66- 77.
|
|
JIN W , SHANG Y . The safety supervision of unmanned aircraft systems in China[J]. Science & Technology Review, 2019, 37 (14): 66- 77.
|
2 |
SAMARAS S , DIAMANTIDOU E , ATALOGLOU D , et al. Deep learning on multi sensor data for counter UAV applications-a systematic review[J]. Sensors, 2019, 19 (22): 4837- 4871.
doi: 10.3390/s19224837
|
3 |
ZHANG M , DIAO M , GUO L . Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5, 11074- 11082.
doi: 10.1109/ACCESS.2017.2716191
|
4 |
CRAYE C, ARDJOUNE S. Spatio-temporal semantic segmentation for drone detection[C]//Proc. of the IEEE 16th International Conference on Advanced Video and Signal based Surveillance, 2019.
|
5 |
KIM J , KIM D . Neural network based real-time UAV detection and analysis by sound[J]. Journal of Advanced Information Technology and Convergence, 2018, 8 (1): 43- 52.
doi: 10.14801/JAITC.2018.8.1.43
|
6 |
陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35 (11): 30- 38.
|
|
CHEN X L , GUAN J , HUANG Y , et al. Radar low-observable target detection[J]. Science & Technology Review, 2017, 35 (11): 30- 38.
|
7 |
SAQIB M, KHAN S D, SHARMA N, et al. A study on detecting drones using deep convolutional neural networks[C]//Proc. of the IEEE 14th International Conference on Advanced Video and Signal based Surveillance, 2017.
|
8 |
VASILEIOS M D A, ANASTASIOS D D Z, DARAS P. Does deep super-resolution enhance UAV detection[C]//Proc. of the IEEE 16th International Conference on Advanced Video and Signal Based Surveillance, 2019.
|
9 |
AKER C, KALKAN S. Using deep networks for drone detection[C]//Proc. of the IEEE 14th International Conference on Advanced Video and Signal Based Surveillance, 2017.
|
10 |
ROZANTSEV A , LEPETIT V , FUA P . Detecting flying objects using a single moving camera[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2016, 39 (5): 879- 892.
|
11 |
WILKINSON B , ELLISON C , NYKAZA E T , et al. Deep learning for unsupervised separation of environmental noise sources[J]. Journal of the Acoustical Society of America, 2017, 141 (5): 3964- 3964.
|
12 |
PARK S, SHIN S, KIM Y, et al. Combination of radar and audio sensors for identification of rotor-type unmanned aerial vehicles (UAVs)[C]//Proc. of the IEEE Sensors, 2015.
|
13 |
LIU H, WEI Z Q, CHEN Y T, et al. Drone detection based on an audio-assisted camera array[C] //Proc. of the IEEE 3rd International Conference on Multimedia Big Data, 2017: 402-406.
|
14 |
KIM J, PARK C, AHN J, et al. Real-time UAV sound detection and analysis system[C]//Proc. of the IEEE Sensors Applications Symposium, 2017.
|
15 |
CHEN V C . The micro-Doppler effect in radar[M]. Norwood: Artech House, 2011.
|
16 |
WANG L , TANG J , LIAO Q M . A study on radar target detection based on deep neural networks[J]. IEEE Sensors Letters, 2019, 3 (3): 7000504.
|
17 |
HARMANNY R, DEWIT J, CABIC G P. Radar micro-Doppler feature extraction using the spectrogram and the cepstrogram[C]//Proc. of the 11th European Radar Conference, 2014: 165-168.
|
18 |
MOLCHANOV P , HARMANNY R I , DEWIT J , et al. Classification of small UAVs and birds by micro-Do ppler signatures[J]. International Journal of Microwave and Wireless Technologies, 2013, 6 (3/4): 435- 444.
|
19 |
FUHRMANN L, BIALLAWONS O, KLARE J, et al. Micro-Doppler analysis and classification of UAVs at Ka band[C]//Proc. of the 18th International Radar Symposium, 2017.
|
20 |
REN J F , JIANG X D . Regularized 2D complex-log spectral analysis and subspace reliability analysis of micro-Doppler signature for UAV detection[J]. Pattern Recognition, 2017, 69 (C): 225- 237.
|
21 |
OH B S , GUO X , WAN F Y , et al. Micro-Doppler mini-UAV classification using empirical-mode decomposition features[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 15 (2): 227- 231.
|
22 |
MA X, OH B S, SUN L, et al. EMD-based entropy features for micro-Doppler mini-UAV classification[C]//Proc. of the 24th International Conference on Pattern Recognition, 2018: 1295-1300.
|
23 |
刘玉琪, 易建新, 万显荣, 等. 数字电视外辐射源雷达多旋翼无人机微多普勒效应实验研究[J]. 雷达学报, 2018, 7 (5): 585- 592.
|
|
LIU Y Q , YI J X , WAN X R , et al. Experimental research on micro-Doppler effect of multi-rotor drone with digital television based passive radar[J]. Journal of Radars, 2018, 7 (5): 585- 592.
|
24 |
PATEL J S , FIORANELLI F , ANDERSON D . Review of radar classification and RCS characterization techniques for small UAVs or drones[J]. IET Radar Sonar & Navigation, 2018, 12 (9): 911- 919.
|
25 |
TORVIK B , OLSEN K E , GRIFFITHS H . Classification of birds and UAVs based on radar polarimetry[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (9): 1305- 1309.
doi: 10.1109/LGRS.2016.2582538
|
26 |
MESSINA M, PINELLI G. Classification of drones with a surveillance radar signal[C]//Proc. of the 12th International Conference on Computer Vision Systems, 2019.
|
27 |
陈唯实, 刘佳, 陈小龙, 等. 基于运动模型的低空非合作无人机目标识别[J]. 北京航空航天大学学报, 2019, 45 (4): 687- 694.
|
|
CHEN W S , LIU J , CHEN X L , et al. Non-cooperative UAV target recognition in low-altitude airspace based on motion model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (4): 687- 694.
|
28 |
LI X R , BAR-SHALOM Y . Design of an interacting multiple model algorithm for air traffic control tracking[J]. IEEE Trans.on Control Systems Technology, 1993, 1 (3): 186- 194.
doi: 10.1109/87.251886
|
29 |
陈唯实. 基于时域特性的非相参雷达目标检测与跟踪[J]. 系统工程与电子技术, 2016, 38 (8): 1800- 1807.
|
|
CHEN W S . Incoherent radar target detection and tracking with temporal features[J]. Systems Engineering and Electronics, 2016, 38 (8): 1800- 1807.
|