系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (4): 927-936.doi: 10.12305/j.issn.1001-506X.2021.04.09

• 传感器与信号处理 • 上一篇    下一篇

基于模型转换频率估计的低空目标分类

陈唯实1,*(), 黄毅峰1(), 陈小龙2(), 卢贤锋1(), 张洁1()   

  1. 1. 中国民航科学技术研究院, 北京 100028
    2. 海军航空大学, 山东 烟台 264001
  • 收稿日期:2020-04-14 出版日期:2021-03-25 发布日期:2021-03-31
  • 通讯作者: 陈唯实 E-mail:chenwsh@mail.castc.org.cn;huangyf@mail.castc.org.cn;cxlcxl1209@163.com;luxf@mail.castc.org.cn;zhangjie@mail.castc.org.cn
  • 作者简介:陈唯实 (1982-), 男, 研究员, 博士, 主要研究方向为无人机反制、雷达目标检测与跟踪、机场安全运行技术。E-mail: chenwsh@mail.castc.org.cn|黄毅峰 (1964-), 男, 工程师,本科, 主要研究方向为飞行安全管理、机场安全运行技术。E-mail: huangyf@mail.castc.org.cn|陈小龙 (1985-), 男, 副教授, 博士, 主要研究方向为智能雷达信号处理、动目标检测。E-mail: cxlcxl1209@163.com|卢贤锋 (1978-), 男, 高级工程师, 硕士, 主要研究方向为机场安全运行技术。E-mail: luxf@mail.castc.org.cn|张洁 (1981-), 女, 高级工程师, 硕士, 主要研究方向为机场鸟击防范技术。E-mail: zhangjie@mail.castc.org.cn
  • 基金资助:
    国家自然科学基金民航联合基金(U1933135);国家重点研发计划(2016YFC0800406)

Low-altitude target classification based on model conversion frequency estimation

Weishi CHEN1,*(), Yifeng HUANG1(), Xiaolong CHEN2(), Xianfeng LU1(), Jie ZHANG1()   

  1. 1. China Academy of Civil Aviation Science and Technology, Beijing 100028, China
    2. Naval Aviation University, Yantai 264001, China
  • Received:2020-04-14 Online:2021-03-25 Published:2021-03-31
  • Contact: Weishi CHEN E-mail:chenwsh@mail.castc.org.cn;huangyf@mail.castc.org.cn;cxlcxl1209@163.com;luxf@mail.castc.org.cn;zhangjie@mail.castc.org.cn

摘要:

为解决传统机械扫描预警雷达的低空目标分类问题, 提出一种利用模型转换频率估计的飞鸟与无人机目标分类方法。首先, 建立可能的无人机和飞鸟目标运动模型, 进而对目标轨迹进行多模型滤波和平滑处理。然后, 通过估计目标的模型转换频率实现目标分类。仿真结果验证了所提方法的鲁棒性和有效性, 证明经过平滑处理的目标分类结果优于仅经过滤波处理。针对低空预警雷达在机场和海岸环境中采集的真实数据, 在无人机频繁改变飞行方向模拟飞鸟机动性特征的情况下, 所提方法仍然可以较好地跟踪和区分无人机与飞鸟目标, 大幅降低了雷达系统的虚警率。

关键词: 无人机, 目标分类, 目标跟踪, 多模型滤波, 模型转换, 预警雷达

Abstract:

In order to solve the problem of low altitude target classification of traditional mechanical scanning early warning radar, a method for target classification of flying bird and unmanned aerial vehicle (UAV) based on model conversion frequency estimation is proposed. Firstly, the possible UAV and flying bird target motion models are established, the multi-model filtering and smoothing are applied to the target trajectory. And then the target classification is realized by the model conversion frequency of the target estimation. Simulation results verify the robustness and effectiveness of the proposed method, and prove that the target classification result after smoothing is better than that only after filtering. According to the real data collected by low altitude early warning radar in the airport and coastal environment, the proposed method can still track and distinguish UAV and bird targets, and greatly reduce the false alarm rate of the radar system when UAV frequently changes its flight direction to simulate the mobility characteristics of flying bird.

Key words: unmanned aerial vehicle (UAV), target classification, target tracking, multi-model filtering, model conversion, early warning radar

中图分类号: