| 1 | ARAB H ,  DUFOUR S ,  MOLDOVAN E , et al.  Accurate and robust CW-LFM radar sensor: transceiver front-end design and implementation[J]. IEEE Sensors Journal, 2018, 19 (5): 1943- 1950. | 
																													
																						| 2 | FAN H Y ,  REN L X ,  MAO E , et al.  A high-precision phase-derived velocity measurement method for high-speed targets based on wideband direct sampling LFM radar[J]. IEEE Trans. on Geoence and Remote Sensing, 2019, 57 (12): 10147- 10163. doi: 10.1109/TGRS.2019.2931633
 | 
																													
																						| 3 | KROH P K ,  SIMON R ,  RUPITSCH S J .  Classification of sonar targets in air: a neural network approach[J]. Sensors, 2019, 19 (5): 1176. doi: 10.3390/s19051176
 | 
																													
																						| 4 | ARIE R ,  BRAND A ,  ENGELBERG S .  Compressive sensing and sub-Nyquist sampling[J]. IEEE Instrumentation and Measurement Magazine, 2020, 23 (2): 94- 101. doi: 10.1109/MIM.2020.9062696
 | 
																													
																						| 5 | DONG N F ,  WANG J X .  Sub-Nyquist sampling and parameters estimation of wideband LFM signals based on FRFT[J]. Radioelectronics and Communications Systems, 2018, 61 (8): 333- 341. doi: 10.3103/S0735272718080010
 | 
																													
																						| 6 | SU H N ,  BAO Q L ,  CHEN Z P .  ADMM-net: a deep learning approach for parameter estimation of Chirp signals under sub-Nyquist sampling[J]. IEEE Access, 2020, 8, 75714- 75727. | 
																													
																						| 7 | 张京超, 付宁, 乔立岩, 等.  一种面向信息带宽的频谱感知方法研究[J]. 物理学报, 2014, 63 (3): 030701. | 
																													
																						|  | ZHANG J C ,  FU N ,  QIAO L Y , et al.  Investigation of information bandwidth oriented spectrum sensing method[J]. Acta Physica Sinica, 2014, 63 (3): 030701. | 
																													
																						| 8 | MISHALI M ,  ELDAR Y C .  From theory to practice: sub-Nyquist sampling of sparse wideband analog signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4 (2): 375- 391. doi: 10.1109/JSTSP.2010.2042414
 | 
																													
																						| 9 | GAI J X, DU H C, LIU Q. Support recovery for MWC based on random reduction and null space[C]//Proc. of the IEEE International Conference on Cognitive Informatics & Cognitive Computing, 2018. | 
																													
																						| 10 | TROPP J A ,  LASKA J N ,  DUARTE M F , et al.  Beyond Nyquist: efficient sampling of sparse bandlimited signals[J]. IEEE Trans. on Information Theory, 2010, 56 (1): 520- 543. doi: 10.1109/TIT.2009.2034811
 | 
																													
																						| 11 | ZHAO H R ,  QIAO L Y ,  ZHANG J C , et al.  Generalized random demodulator associated with fractional Fourier transform[J]. Circuits Systems & Signal Processing, 2018, 37 (11): 5161- 5173. | 
																													
																						| 12 | MATUSIAK E ,  ELDAR Y C .  Sub-Nyquist sampling of short pulses[J]. IEEE Trans. on Signal Processing, 2012, 60 (3): 1134- 1148. doi: 10.1109/TSP.2011.2176934
 | 
																													
																						| 13 | WANG C, CHEN P, MENG C, et al. Sub-Nyquist sampling based on exponential reproducing Gabor windows[C]//Proc. of the International Conference in Communications, Signal Processing, and Systems, 2018. | 
																													
																						| 14 | GOEL A ,  KUMAR A ,  BAHL R .  Steerable sparse linear array design based on compressive sensing with multiple measurement vectors[J]. Journal of the Acoustical Society of America, 2019, 145 (3): 1212- 1220. doi: 10.1121/1.5092212
 | 
																													
																						| 15 | ZHU Y G ,  CHEN Q S ,  LI Y S , et al.  Frequency-domain entropy-based blind support recovery from multiple measurement vectors[J]. IEEE Signal Processing Letters, 2020, 27, 980- 984. doi: 10.1109/LSP.2020.3000076
 | 
																													
																						| 16 | 徐丽琴, 李勇.  单基地MIMO雷达低复杂度求根MUSIC角度估计方法[J]. 系统工程与电子技术, 2017, 39 (11): 2434- 2440. doi: 10.3969/j.issn.1001-506X.2017.11.07
 | 
																													
																						|  | XU L Q ,  LI Y .  Low complexity root-MUSIC algorithm for angle estimation in monostatic MIMO radar[J]. Systems Engineering and Electronics, 2017, 39 (11): 2434- 2440. doi: 10.3969/j.issn.1001-506X.2017.11.07
 | 
																													
																						| 17 | ADHIKARI K ,  DROZDENKO B .  Symmetry-imposed rectangular coprime and nested arrays for direction of arrival estimation with multiple signal classification[J]. IEEE Access, 2019, 7, 153217- 153229. doi: 10.1109/ACCESS.2019.2948503
 | 
																													
																						| 18 | TROPP J A ,  GILBERT A C ,  STRAUSS M J .  Algorithms for simultaneous sparse approximation. Part Ⅰ: greedy pursuit[J]. Signal Processing, 2006, 86 (3): 572- 588. doi: 10.1016/j.sigpro.2005.05.030
 | 
																													
																						| 19 | YEH C C, HSU K N, CHI J C, et al. Adaptive simultaneous orthogonal matching pursuit for mmwave hybrid beam tracking[C]//Proc. of the IEEE International Conference on Digital Signal Processing, 2018. | 
																													
																						| 20 | 陈鹏, 孟晨, 王成, 等.  基于空间投影的高冗余Gabor框架采样系统信号重构方法[J]. 系统工程与电子技术, 2017, 39 (2): 244- 252. | 
																													
																						|  | CHEN P ,  MENG C ,  WANG C , et al.  Signal reconstruction based on signal space projection for Gabor frame sampling system with high redundancy[J]. Systems Engineering and Electronics, 2017, 39 (2): 244- 252. | 
																													
																						| 21 | WIPF D P ,  RAO B D .  An empirical Bayesian strategy for solving the mimultaneous sparse approximation problem[J]. IEEE Trans. on Signal Processing, 2007, 55 (7): 3704- 3716. doi: 10.1109/TSP.2007.894265
 | 
																													
																						| 22 | CHEN W ,  WIPF D ,  WANG Y , et al.  Simultaneous Bayesian sparse approximation with structured sparse models[J]. IEEE Trans. on Signal Processing, 2016, 64 (23): 6145- 6159. doi: 10.1109/TSP.2016.2605067
 | 
																													
																						| 23 | WAN H P ,  NI Y Q .  Bayesian multi-task learning methodology for reconstruction of structural health monitoring data[J]. Structural Health Monitoring, 2019, 18 (4): 1282- 1309. doi: 10.1177/1475921718794953
 | 
																													
																						| 24 | AL-SHOUKAIRI M ,  SCHNITER P ,  RAO B D .  A GAMP-based low complexity sparse Bayesian learning algorithm[J]. IEEE Trans. on Signal Processing, 2018, 66 (2): 294- 308. doi: 10.1109/TSP.2017.2764855
 | 
																													
																						| 25 | WANG Z ,  GUO X M ,  WANG G L .  Exploring the Laplace prior in radio tomographic imaging with sparse Bayesian learning towards the robustness to multipath fading[J]. Sensors, 2019, 19 (23): 51269. | 
																													
																						| 26 | MORAVEJ Z ,  MOVAHHEDNEYA M ,  PAZOKI M .  Gabor transform-based fault location method for multi-terminal transmission lines[J]. Measurement, 2018, 125, 667- 679. doi: 10.1016/j.measurement.2018.05.027
 | 
																													
																						| 27 | YAO L ,  PAN Z .  Iris recognition method based on Harr wavelet and Log-Gabor transform[J]. Application of Electronic Technique, 2019, 45 (4): 113- 117. | 
																													
																						| 28 | 陈鹏, 孟晨, 王成.  基于高度冗余Gabor框架的欠Nyquist采样系统子空间探测[J]. 电子与信息学报, 2015, 37 (12): 2877- 2884. | 
																													
																						|  | CHEN P ,  MENG C ,  WANG C .  Subspace detection of sub-Nyquist sampling system based on highly redundant Gabor frames[J]. Journal of Electronics & Information Technology, 2015, 37 (12): 2877- 2884. | 
																													
																						| 29 | PORIA A ,  SWAIN J .  Hilbert space valued Gabor frames in weighted amalgam spaces[J]. Mathematics, 2019, 10 (4): 377- 394. | 
																													
																						| 30 | 徐珊珊, 金玉华, 张庆兵.  带全局判据的改进量子粒子群优化算法[J]. 系统工程与电子技术, 2018, 40 (9): 240- 246. | 
																													
																						|  | XU S S ,  JIN Y H ,  ZHANG Q B .  Improved quantum-behaved particle swarm optimization with global criterion[J]. Systems Engineering and Electronics, 2018, 40 (9): 240- 246. | 
																													
																						| 31 | WANG L ,  LIU L L ,  QI J Y , et al.  Improved quantum particle swarm optimization algorithm for offline path planning in AUVs[J]. IEEE Access, 2020, 8, 143397- 143411. doi: 10.1109/ACCESS.2020.3013953
 |