1 |
ARAB H , DUFOUR S , MOLDOVAN E , et al. Accurate and robust CW-LFM radar sensor: transceiver front-end design and implementation[J]. IEEE Sensors Journal, 2018, 19 (5): 1943- 1950.
|
2 |
FAN H Y , REN L X , MAO E , et al. A high-precision phase-derived velocity measurement method for high-speed targets based on wideband direct sampling LFM radar[J]. IEEE Trans. on Geoence and Remote Sensing, 2019, 57 (12): 10147- 10163.
doi: 10.1109/TGRS.2019.2931633
|
3 |
KROH P K , SIMON R , RUPITSCH S J . Classification of sonar targets in air: a neural network approach[J]. Sensors, 2019, 19 (5): 1176.
doi: 10.3390/s19051176
|
4 |
ARIE R , BRAND A , ENGELBERG S . Compressive sensing and sub-Nyquist sampling[J]. IEEE Instrumentation and Measurement Magazine, 2020, 23 (2): 94- 101.
doi: 10.1109/MIM.2020.9062696
|
5 |
DONG N F , WANG J X . Sub-Nyquist sampling and parameters estimation of wideband LFM signals based on FRFT[J]. Radioelectronics and Communications Systems, 2018, 61 (8): 333- 341.
doi: 10.3103/S0735272718080010
|
6 |
SU H N , BAO Q L , CHEN Z P . ADMM-net: a deep learning approach for parameter estimation of Chirp signals under sub-Nyquist sampling[J]. IEEE Access, 2020, 8, 75714- 75727.
|
7 |
张京超, 付宁, 乔立岩, 等. 一种面向信息带宽的频谱感知方法研究[J]. 物理学报, 2014, 63 (3): 030701.
|
|
ZHANG J C , FU N , QIAO L Y , et al. Investigation of information bandwidth oriented spectrum sensing method[J]. Acta Physica Sinica, 2014, 63 (3): 030701.
|
8 |
MISHALI M , ELDAR Y C . From theory to practice: sub-Nyquist sampling of sparse wideband analog signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4 (2): 375- 391.
doi: 10.1109/JSTSP.2010.2042414
|
9 |
GAI J X, DU H C, LIU Q. Support recovery for MWC based on random reduction and null space[C]//Proc. of the IEEE International Conference on Cognitive Informatics & Cognitive Computing, 2018.
|
10 |
TROPP J A , LASKA J N , DUARTE M F , et al. Beyond Nyquist: efficient sampling of sparse bandlimited signals[J]. IEEE Trans. on Information Theory, 2010, 56 (1): 520- 543.
doi: 10.1109/TIT.2009.2034811
|
11 |
ZHAO H R , QIAO L Y , ZHANG J C , et al. Generalized random demodulator associated with fractional Fourier transform[J]. Circuits Systems & Signal Processing, 2018, 37 (11): 5161- 5173.
|
12 |
MATUSIAK E , ELDAR Y C . Sub-Nyquist sampling of short pulses[J]. IEEE Trans. on Signal Processing, 2012, 60 (3): 1134- 1148.
doi: 10.1109/TSP.2011.2176934
|
13 |
WANG C, CHEN P, MENG C, et al. Sub-Nyquist sampling based on exponential reproducing Gabor windows[C]//Proc. of the International Conference in Communications, Signal Processing, and Systems, 2018.
|
14 |
GOEL A , KUMAR A , BAHL R . Steerable sparse linear array design based on compressive sensing with multiple measurement vectors[J]. Journal of the Acoustical Society of America, 2019, 145 (3): 1212- 1220.
doi: 10.1121/1.5092212
|
15 |
ZHU Y G , CHEN Q S , LI Y S , et al. Frequency-domain entropy-based blind support recovery from multiple measurement vectors[J]. IEEE Signal Processing Letters, 2020, 27, 980- 984.
doi: 10.1109/LSP.2020.3000076
|
16 |
徐丽琴, 李勇. 单基地MIMO雷达低复杂度求根MUSIC角度估计方法[J]. 系统工程与电子技术, 2017, 39 (11): 2434- 2440.
doi: 10.3969/j.issn.1001-506X.2017.11.07
|
|
XU L Q , LI Y . Low complexity root-MUSIC algorithm for angle estimation in monostatic MIMO radar[J]. Systems Engineering and Electronics, 2017, 39 (11): 2434- 2440.
doi: 10.3969/j.issn.1001-506X.2017.11.07
|
17 |
ADHIKARI K , DROZDENKO B . Symmetry-imposed rectangular coprime and nested arrays for direction of arrival estimation with multiple signal classification[J]. IEEE Access, 2019, 7, 153217- 153229.
doi: 10.1109/ACCESS.2019.2948503
|
18 |
TROPP J A , GILBERT A C , STRAUSS M J . Algorithms for simultaneous sparse approximation. Part Ⅰ: greedy pursuit[J]. Signal Processing, 2006, 86 (3): 572- 588.
doi: 10.1016/j.sigpro.2005.05.030
|
19 |
YEH C C, HSU K N, CHI J C, et al. Adaptive simultaneous orthogonal matching pursuit for mmwave hybrid beam tracking[C]//Proc. of the IEEE International Conference on Digital Signal Processing, 2018.
|
20 |
陈鹏, 孟晨, 王成, 等. 基于空间投影的高冗余Gabor框架采样系统信号重构方法[J]. 系统工程与电子技术, 2017, 39 (2): 244- 252.
|
|
CHEN P , MENG C , WANG C , et al. Signal reconstruction based on signal space projection for Gabor frame sampling system with high redundancy[J]. Systems Engineering and Electronics, 2017, 39 (2): 244- 252.
|
21 |
WIPF D P , RAO B D . An empirical Bayesian strategy for solving the mimultaneous sparse approximation problem[J]. IEEE Trans. on Signal Processing, 2007, 55 (7): 3704- 3716.
doi: 10.1109/TSP.2007.894265
|
22 |
CHEN W , WIPF D , WANG Y , et al. Simultaneous Bayesian sparse approximation with structured sparse models[J]. IEEE Trans. on Signal Processing, 2016, 64 (23): 6145- 6159.
doi: 10.1109/TSP.2016.2605067
|
23 |
WAN H P , NI Y Q . Bayesian multi-task learning methodology for reconstruction of structural health monitoring data[J]. Structural Health Monitoring, 2019, 18 (4): 1282- 1309.
doi: 10.1177/1475921718794953
|
24 |
AL-SHOUKAIRI M , SCHNITER P , RAO B D . A GAMP-based low complexity sparse Bayesian learning algorithm[J]. IEEE Trans. on Signal Processing, 2018, 66 (2): 294- 308.
doi: 10.1109/TSP.2017.2764855
|
25 |
WANG Z , GUO X M , WANG G L . Exploring the Laplace prior in radio tomographic imaging with sparse Bayesian learning towards the robustness to multipath fading[J]. Sensors, 2019, 19 (23): 51269.
|
26 |
MORAVEJ Z , MOVAHHEDNEYA M , PAZOKI M . Gabor transform-based fault location method for multi-terminal transmission lines[J]. Measurement, 2018, 125, 667- 679.
doi: 10.1016/j.measurement.2018.05.027
|
27 |
YAO L , PAN Z . Iris recognition method based on Harr wavelet and Log-Gabor transform[J]. Application of Electronic Technique, 2019, 45 (4): 113- 117.
|
28 |
陈鹏, 孟晨, 王成. 基于高度冗余Gabor框架的欠Nyquist采样系统子空间探测[J]. 电子与信息学报, 2015, 37 (12): 2877- 2884.
|
|
CHEN P , MENG C , WANG C . Subspace detection of sub-Nyquist sampling system based on highly redundant Gabor frames[J]. Journal of Electronics & Information Technology, 2015, 37 (12): 2877- 2884.
|
29 |
PORIA A , SWAIN J . Hilbert space valued Gabor frames in weighted amalgam spaces[J]. Mathematics, 2019, 10 (4): 377- 394.
|
30 |
徐珊珊, 金玉华, 张庆兵. 带全局判据的改进量子粒子群优化算法[J]. 系统工程与电子技术, 2018, 40 (9): 240- 246.
|
|
XU S S , JIN Y H , ZHANG Q B . Improved quantum-behaved particle swarm optimization with global criterion[J]. Systems Engineering and Electronics, 2018, 40 (9): 240- 246.
|
31 |
WANG L , LIU L L , QI J Y , et al. Improved quantum particle swarm optimization algorithm for offline path planning in AUVs[J]. IEEE Access, 2020, 8, 143397- 143411.
doi: 10.1109/ACCESS.2020.3013953
|