系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (3): 731-739.doi: 10.12305/j.issn.1001-506X.2021.03.17
收稿日期:
2020-04-22
出版日期:
2021-03-01
发布日期:
2021-03-16
作者简介:
李文龙(1988-), 男, 工程师, 博士, 主要研究方向为卫星平台、在轨服务与维护。E-mail:基金资助:
Wenlong LI(), Xianglong KONG(), Wei MA(), Lili YANG()
Received:
2020-04-22
Online:
2021-03-01
Published:
2021-03-16
摘要:
由于高轨高价值卫星在轨时面临诸多威胁, 探索高轨卫星平台在轨顽存技术体系(technology system of on-orbit strong survivability, TSO2S2)有利于提升平台在轨生存能力。针对这一情况, 系统地定义了TSO2S2内涵, 从分析威胁源出发, 建立以告警和防护为手段的顽存技术体系。首先, 将8种威胁分为被动型和主动型, 分别阐述威胁机理, 采用定性和定量结合的方法分析其损伤效应。其次, 提出天地一体的平台防护方案, 设计兼顾空间碎片、激光等5类威胁的综合告警设备。最后, 系统总结了防护技术方法, 为高轨卫星平台提升在轨安全性提供参考。
中图分类号:
李文龙, 孔祥龙, 马伟, 杨丽丽. 高轨卫星平台在轨顽存技术体系[J]. 系统工程与电子技术, 2021, 43(3): 731-739.
Wenlong LI, Xianglong KONG, Wei MA, Lili YANG. Technology system of on-orbit strong survivability for GEO satellite bus[J]. Systems Engineering and Electronics, 2021, 43(3): 731-739.
表2
不同材料能量密度阀值估算值以及功率密度阀值"
材料 | 能量密度阀值估算/(J/cm2) | 30 s破坏功率密度阀值/(W/cm2) | |||||
1.064 μm | 1.315 μm | 3.8 μm | 1.064 μm | 1.315 μm | 3.8 μm | ||
(c/e)T300 | 52 | 52 | 57 | 3.8 | 3.8 | 4 | |
(c/e)M55J | 54 | 54 | 60 | 4 | 4 | 4.2 | |
玻璃钢 | 290 | 290 | 250 | 15.2 | 15.2 | 13.9 | |
聚酰亚胺 | 4 110 | 4 110 | 2 350 | 136.9 | 136.9 | 78.2 | |
砷化镓 | 220 | 290 | 1130 | 7.4 | 9.5 | 37.6 | |
2 024铝合金 | 30 300 | 30 300 | 35 800 | 1 007.9 | 1 007.9 | 1163 | |
Hg0.8Cd0.2Te | 17.6 | 17.6 | 17.6 | 0.59 | 0.59 | 0.59 | |
Si | 70 | 70 | 6 150 | 2.3 | 2.3 | 204.7 |
表4
地基激光到达GEO功率密度估算值"
D/cm | P=100 MW | P=10 MW | P=1 MW | ||||||||
1.064 μm | 1.315 μm | 3.8 μm | 1.064 μm | 1.315 μm | 3.8 μm | 1.064 μm | 1.315 μm | 3.8 μm | |||
10 | 4.8E-4 | 4.2E-4 | 8.5E-5 | 4.8E-5 | 4.2E-5 | 8.5E-6 | 4.8E-6 | 4.2E-6 | 8.5E-7 | ||
50 | 0.012 | 0.01 | 0.002 | 1.2E-3 | 1E-3 | 2E-4 | 1.2E-4 | 1E-4 | 2E-5 | ||
100 | 0.047 | 0.042 | 8.5E-3 | 4.7E-3 | 4.2E-3 | 8.5E-4 | 4.7E-4 | 4.2E-4 | 8.5E-5 | ||
150 | 0.11 | 0.093 | 0.019 | 0.011 | 9.3E-3 | 1.9E-3 | 1.1E-3 | 9.3E-4 | 1.9E-4 |
1 | DOUGLAS V, HARALD W, LOU M. Lockheed Martin's A2100 spacecraft bus modernization[C]//Proc.of the 34th AIAA International Communications Satellite Systems Confe-rence, 2016: AIAA 2016-5724. |
2 |
马晓兵, 魏强, 周江, 等. 高轨卫星平台被动防护体系及相关技术研究[J]. 航天电子对抗, 2018, 34 (4): 38- 40.
doi: 10.3969/j.issn.1673-2421.2018.04.010 |
MA X B , WEI Q , ZHOU J , et al. Passive defence system and correlated technology of GEO satellite platform[J]. Aerospace Electronic Warfare, 2018, 34 (4): 38- 40.
doi: 10.3969/j.issn.1673-2421.2018.04.010 |
|
3 |
刘必鎏, 吴萌, 麻毅威, 等. 卫星面临的威胁及其防护[J]. 航天电子对抗, 2010, 26 (6): 25- 27.
doi: 10.3969/j.issn.1673-2421.2010.06.009 |
LIU B L , WU M , MA Y W , et al. Threats to the satellit and its protection[J]. Aerospace Electronic Warfare, 2010, 26 (6): 25- 27.
doi: 10.3969/j.issn.1673-2421.2010.06.009 |
|
4 | 李发泉, 程学武, 杨勇, 等. 星载威胁激光探测告警的技术需求分析[J]. 红外与激光工程, 2008, 37 (S3): 331- 334. |
LI F Q , CHENG X W , YANG Y , et al. Technique requirement analysis of satellite borne threat laser detecting warning[J]. Infrared and Laser Engineering, 2008, 37 (S3): 331- 334. | |
5 | 闫军, 郑世贵, 韩增尧, 等. 天宫一号空间碎片防护设计与实践[J]. 中国科学:技术科学, 2014, 44 (3): 243- 250. |
YAN J , ZHENG S G , HAN Z Y , et al. Space debris protection design and application for Tiangong-1[J]. Scientia Sinica Techologica, 2014, 44 (3): 243- 250. | |
6 | 段敏.多弹丸高速撞击空间碎片防护结构的损伤与防护特性研究[D].哈尔滨: 哈尔滨工业大学, 2018. |
DUAN M. Research on damage characteristics of the space debris shield impacted by hypervelocity multiple projectiles[D]. Harbin: Harbin Institute of Technology, 2018. | |
7 | WU Q, ZHANG Q M, GONG Z Z, et al. Shielding properties investigation of impact-initiated energetic materials under hypervelocity impact[C]//Proc.of the 7th European Conference on Space Debris, 2017. |
8 |
CHERNIAEV A , TELICHEV I . Sacrificial bumpers with high-impedance ceramic coating for orbital debris shielding: a preliminary experimental and numerical study[J]. International Journal of Impact Engineering, 2018, 119, 45- 56.
doi: 10.1016/j.ijimpeng.2018.05.004 |
9 |
KIM Y H , PARK Y , CHA J H , et al. Behavior of shear thickening fluid(STF) impregnated fabric composite rear wall under hypervelocity impact[J]. Composite Structures, 2018, 204, 52- 62.
doi: 10.1016/j.compstruct.2018.07.064 |
10 |
KIM Y H , CHOI C , KUMAR S , et al. Behavior of dragon skin flexible metal bumper under hypervelocity impact[J]. International Journal of Impact Engineering, 2019, 125, 13- 26.
doi: 10.1016/j.ijimpeng.2018.10.005 |
11 |
张旺勋, 侯洪涛, 王维平. 基于MATE的卫星导航系统安全防护设计[J]. 系统工程与电子技术, 2013, 35 (6): 1231- 1235.
doi: 10.3969/j.issn.1001-506X.2013.06.17 |
ZHANG W X , HOU H T , WANG W P . MATE based design for protection of GNSS[J]. Systems Engineering and Electronics, 2013, 35 (6): 1231- 1235.
doi: 10.3969/j.issn.1001-506X.2013.06.17 |
|
12 |
DEBORAH H C . Cybersecurity threats to satellite communications: towards a typology of state actor responses[J]. Acta Astronautica, 2016, 128, 409- 415.
doi: 10.1016/j.actaastro.2016.07.041 |
13 |
熊玉卿, 罗崇泰. 星载光学遥感仪器激光防护薄膜技术[J]. 红外与激光工程, 2007, 36 (6): 902- 905.
doi: 10.3969/j.issn.1007-2276.2007.06.035 |
XIONG Y Q , LUO C T . Laser protection thin film for satellite-borne remote sensing instrument[J]. Infrared and Laser Engineering, 2007, 36 (6): 902- 905.
doi: 10.3969/j.issn.1007-2276.2007.06.035 |
|
14 | 常峥, 王咏梅, 田天, 等. 地球同步轨道卫星在轨异常与空间环境相关性分析[J]. 宇航学报, 2017, 38 (4): 435- 442. |
CHANG Z , WANG Y M , TIAN T , et al. Causal analysis between geosynchronous satellite anomalies and space environment[J]. Journal of Astronautics, 2017, 38 (4): 435- 442. | |
15 | KOONS H C, MAZUR J E, SELESNICK R S, et al. The impact of the space environment on space system[R]. Segundo: Aerospace Corporation Technology Operations, 1999: 1-13. |
16 | 张海涛, 张占月, 吴帅, 等. 地球静止轨道卫星碰撞碎片短期演化风险分析[J]. 上海航天, 2019, 36 (1): 67- 79. |
ZHANG H T , ZHANG Z Y , WU S , et al. Sort-term evolution risk of Geostationary satellites' collision[J]. Aerospace Shanghai, 2019, 36 (1): 67- 79. | |
17 | 沈金华, 贾浩. 电磁轨道炮及其应用[J]. 爆炸与冲击, 1984, 4 (2): 90- 96. |
SHEN J H , JIA H . Electromagnetic railgun and its applications[J]. Explosion and Shock Waves, 1984, 4 (2): 90- 96. | |
18 |
杨雨川, 谭吉春, 盛定仪, 等. 高功率微波武器对卫星的威胁及防范措施[J]. 航天电子对抗, 2007, 23 (5): 12- 15.
doi: 10.3969/j.issn.1673-2421.2007.05.004 |
YANG Y C , TAN J C , SHENG D Y , et al. Threaten of satellite by HPM weapon and its protective measures[J]. Aerospace Electronic Warfare, 2007, 23 (5): 12- 15.
doi: 10.3969/j.issn.1673-2421.2007.05.004 |
|
19 |
梁斌, 徐文福, 李成, 等. 地球静止轨道在轨服务技术研究现状与发展趋势[J]. 宇航学报, 2010, 31 (1): 1- 13.
doi: 10.3873/j.issn.1000-1328.2010.01.001 |
LIANG B , XU W F , LI C , et al. The status and prospect of orbital servicing in the geostationary orbit[J]. Journal of Astronautics, 2010, 31 (1): 1- 13.
doi: 10.3873/j.issn.1000-1328.2010.01.001 |
|
20 | SATNEWS D. Northrop grumman's MEV-1 arrives on station to rescue intelsat 901[EB/OL].[2020-04-02].https://www.satnews.com/story.php?number=2019431572. |
21 |
HIRZINGER G , LANDZETTEL K , BRUNNER B , et al. DLR's robotics technologies for on-orbit servicing[J]. Advanced Robotics, 2004, 18, 139- 174.
doi: 10.1163/156855304322758006 |
22 | DEBUS T J, DOUGHERTY S P. Overview and performance of the front end robotics enabling near-term demonstration (FREND)robotic arm[C]//Proc.of the AIAA Info-tech@ Aerospace Conference, 2009: AIAA 2009-1870. |
23 | BISCHOF B, ASTRIUM G. Roger-robotic geostationary orbit restorer[C]//Proc.of the 54th International Astronautical Congress, 2003. |
24 | REED J, BUSQUETS J, WHITE C. Grappling system for capturing heavy space debris[C]//Proc.of the 2nd European Workshop on Active Debris Removal, 2012. |
25 | ZHAI G , QIU Y , LIANG B , et al. System dynamics and feedforward control for tether-net space robot system[J]. International Journal of Advanced Robotic Systems, 2009, 6 (2): 137- 144. |
26 | PARNESS A, HEVERLY M, HILGEMANN E, et al. ON-OFF adhesive grippers for earth-orbit[C]//Proc.of the AIAA Space Conferences and Exposition, 2013: AIAA 2013-5533. |
27 |
SHAN M H , GUO J , GILL E . Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 2016, 80, 18- 32.
doi: 10.1016/j.paerosci.2015.11.001 |
28 |
马俊, 黄攀峰, 孟中杰, 等. 自主机动空间绳网机器人设计与动力学建模[J]. 宇航学报, 2013, 34 (10): 1316- 1322.
doi: 10.3873/j.issn.1000-1328.2013.10.004 |
MA J , HUANG P F , MENG Z J , et al. Design and dynamics modeling of autonomous maneuvering tethered-net space robot system[J]. Journal of Astronautics, 2013, 34 (10): 1316- 1322.
doi: 10.3873/j.issn.1000-1328.2013.10.004 |
|
29 | WIGBER F . Automated rendezvous and docking of spacecraft[M]. New York: Cambridge University Press, 2003: 8- 15. |
30 | 秦政.考虑空间碎片影响的航天器风险评估与设备布局设计[D].长沙: 国防科技大学, 2016. |
QIN Z. Risk assessment and equipment layout design for spacecraft considering space debris' influence[D]. Changsha: National University of Defense Technology, 2016. | |
31 | 王若璞.空间碎片环境模型研究[D].郑州: 信息工程大学, 2010. |
WANG R P. Research on space debris environment model[D]. Zhengzhou: Information Engineering University, 2010. | |
32 | 梁彦刚, 秦政. 空间碎片碰撞风险评估模型及其应用[J]. 国防科技大学学报, 2017, 39 (6): 19- 24. |
LIANG Y G , QIN Z . Space debris impact risk assessment model and its application[J]. Journal of National University of Defense Technology, 2017, 39 (6): 19- 24. | |
33 | HYDE J, BJORKMAN M, CHRISTIANSEN E, et al. Micrometeoroid and orbital debris risk assessment with bumper 3[C]//Proc.of the European Conference of Space Debris, 2017. |
34 | MASUMI H, MARTIN S, FRANK S. Initial study on small debris impact risk assessment during orbit transfer to GEO for all-electric satellite[C]//Proc.of the European Conference on Space Debris, 2017. |
35 | 管公顺.航天器空间碎片防护结构超高超声速撞击特性研究[D].哈尔滨: 哈尔滨工业大学, 2006. |
GUAN G S. Hypervelocity impact characteristic investigation of spacecraft space debris shield configuration[D]. Harbin: Harbin Institute of Technology, 2006. | |
36 |
KUMAR S K S , EDWIN A J M , KIM Y H , et al. Polybenzimidazole(PBI) film coating for improved hypervelocity impact energy absorption for space applications[J]. Composite Structure, 2018, 188, 72- 77.
doi: 10.1016/j.compstruct.2017.12.052 |
37 | CHRISTIANSEN E L , CREWS J L , WILLIAMSEN J E , et al. Enhanced meteoroid and orbital debris shielding[J]. International Journal of Impact Engineering, 1995, 17 (1): 217- 228. |
38 |
MISHRA R , BEHERA B K , MILITKY J . Impact simulation of three-dimensional woven kevlar-epoxy composites[J]. Journal of Industrial Textiles, 2016, 45 (5): 978- 994.
doi: 10.1177/1528083714550056 |
39 | KHAN M B , HUSSAIN S , HUSSAIN S , et al. Enhancement of mechanical properties of kevlar-epoxy composite by improving the interface coupling[J]. Journal of Advanced Materials, 2010, 42 (3): 74- 87. |
40 | SON K J, FAHRENTHOLD E P. Hybrid particle-element simulation of composite material impact physics[C]//Proc.of the 18th International Conference on Composites Materials, 2011. |
41 | WHITE D M , TAYLOR E A , CLEGG R A . Numerical simulation and experimental characterization of direct hypervelocity impact on a spacecraft hybrid carbon fibre/Kevlar composite structure[J]. International Journal of Impact Engineering, 2003, 29 (1): 779- 790. |
42 | 刘星.基于碳纳米粒子的非线性散射激光防护技术研究[D].南京: 南京航空航天大学, 2017. |
LIU X. Laser protection technology study based on nonlinear scattering of carbon nanoparticles[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. | |
43 | 朱锦鹏, 马壮, 高红丽, 等. 基于等离子喷涂的反射型激光防护涂层研究[J]. 中国光学, 2017, 10 (5): 578- 588. |
ZHU J P , MA Z , GAO H L , et al. Reflective laser protective coating based on plasma spraying[J]. Chinese Optics, 2017, 10 (5): 578- 588. |
[1] | 张旺勋,侯洪涛,王维平. 基于MATE 的卫星导航系统安全防护设计[J]. Journal of Systems Engineering and Electronics, 2013, 35(6): 1231-1235. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||