1 |
冯蕴天, 张宏军, 郝文宁. 面向军事文本的命名实体识别[J]. 计算机科学, 2015, 42 (7): 15- 18, 47.
|
|
FENG Y T , ZHANG H J , HAO W N . Named entity recognition for military text[J]. Computer Science, 2015, 42 (7): 15- 18, 47.
|
2 |
CHENG G , YANG C Y , YAO X W , et al. When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs[J]. IEEE Trans.on Geoence and Remote Sensing, 2018, 56 (5): 2811- 2821.
doi: 10.1109/TGRS.2017.2783902
|
3 |
王国胤, 何晓. 一种不确定性条件下的自主式知识学习模型[J]. 软件学报, 2003, 14 (6): 68- 74.
|
|
WANG G Y , HE X . A self-learning model under uncertain condition[J]. Journal of Software, 2003, 14 (6): 68- 74.
|
4 |
YANG Y , MA Z G , NIE F P , et al. Multi-class active learning by uncertainty sampling with diversity maximization[J]. International Journal of Computer Vision, 2015, 113 (2): 113- 127.
doi: 10.1007/s11263-014-0781-x
|
5 |
JENNIFER V , ALDEA E . Evidential query-by-committee active learning for pedestrian detection in high-density crowds[J]. International Journal of Approximate Reasoning, 2019, 104 (1): 166- 184.
|
6 |
HAO S . Query by diverse committee in transfer active learning[J]. Frontiers of Computer Science, 2019, 13 (2): 280- 291.
doi: 10.1007/s11704-017-6117-6
|
7 |
吴伟宁, 刘扬, 郭茂祖, 等. 基于采样策略的主动学习算法研究进展[J]. 计算机研究与发展, 2012, 49 (6): 1162- 1173.
|
|
WU W N , LIU Y , GUO M Z , et al. Advances in active learning algorithms based on sampling strategy[J]. Journal of Computer Research and Development, 2012, 49 (6): 1162- 1173.
|
8 |
TOMASZ G , MACIEJ L . Stacked regression with a generalization of the moore-penrose pseudoinverse[J]. Statistics in Transition New Series, 2017, 18 (3): 443- 458.
doi: 10.21307/stattrans-2016-080
|
9 |
MENG Q, WANG Y, CHEN W, et al. Generalization error bounds for optimization algorithms via stability[C]//Proc.of the 31st AAAI Conference on Artificial Intelligence, 2017: 2336-2342.
|
10 |
ZHANG C , CHEN T . An active learning framework for content-based information retrieval[J]. IEEE Trans.on Multimedia, 2002, 4 (2): 260- 268.
doi: 10.1109/TMM.2002.1017738
|
11 |
SETTLES B, CRAVEN M. An analysis of active learning strategies for sequence labeling tasks[C]//Proc.of the Confe-rence on Empirical Methods in Natural Language Processing, 2008: 25-27.
|
12 |
HUANG H L , HUANG J C , FENG Y H , et al. On the improvement of reinforcement active learning with the involvement of cross entropy to address one-shot learning problem[J]. Public Library of Science One, 2019, 14 (6): 1- 17.
|
13 |
HUANG H L , FENG Y H , HUANG J C , et al. A reinforcement one-shot active learning approach for aircraft type recognition[J]. IEEE Access, 2019, 7, 147204- 147214.
doi: 10.1109/ACCESS.2019.2946186
|
14 |
BRINKER K. Incorporating diversity in active learning with support vector machines[C]//Proc.of the 20th International Conference on Machine learning, 2003: 59-66.
|
15 |
YU K, BI J, TRESP V. Active learning via transductive experimental design[C]//Proc.of the 23rd International Conference on Machine Learning, 2006: 1081-1088.
|
16 |
YANG Y Z, LOOG M. Single shot active learning using pseudo annotators[EB/OL].[2020-03-10].https://arxiv.org/abs/1805.06660.
|
17 |
SHEN Y , WANG P J , PAN Z F , et al. An active learning framework for alpha matting[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33 (9): 1951003:1- 1951003:20.
|
18 |
ROMAN S, ARTEM S, IVAN S. Active learning with adaptive density weighted sampling for information extraction from scientific papers[C]//Proc.of the Conference on Artificial Intelligence and Natural Language, 2017: 77-90.
|
19 |
KONYUSHKOVA K, SZNITMAN R, FUA P. Learning active learning from data[C]//Proc.of the 31st International Conference on Nerual Information Processing Systems, 2017: 4228-4238.
|
20 |
HIEU T N, ARNOLD S. Active learning using pre-clustering[C]//Proc.of the 21st International Conference on Machine Learning, 2004: 623-630.
|
21 |
BODO Z, MINIER Z, CSATO L. Active learning with cluster-ing[C]//Proc.of the Workshop on Active Learning and Experimental Design, 2011, 16: 127-139.
|
22 |
吕宗平, 时熙然, 顾兆军. 基于模糊核聚类和主动学习的异常检测方法[J]. 现代电子技术, 2019, 42 (20): 53- 57, 63.
|
|
LYU Z P , SHI X R , GU Z J . Anomaly detection method based on fuzzy kernel clustering and active learning[J]. Modern Electronics Technique, 2019, 42 (20): 53- 57, 63.
|
23 |
张鹏, 刘寅, 栾国强, 等. 基于图约束和预聚类的主动学习算法在威胁情景感知中的研究[J]. 计算机应用研究, 2017, 34 (5): 1544- 1547.
doi: 10.3969/j.issn.1001-3695.2017.05.060
|
|
ZHANG P , LIU Y , LUAN G Q , et al. Research on threat situation awareness in activing learning algorithm based on graph constraints and pre-clustering[J]. Application Research of Computers, 2017, 34 (5): 1544- 1547.
doi: 10.3969/j.issn.1001-3695.2017.05.060
|
24 |
柴变芳, 吕峰, 李文斌, 等. 基于主动学习先验的半监督K-means聚类算法[J]. 计算机应用, 2018, 38 (11): 3139- 3143.
doi: 10.11772/j.issn.1001-9081.2018041251
|
|
CHAI B F , LYU F , LI W B , et al. Semi-supervised K-means clustering algorithm based on active learning priors[J]. Journal of Computer Applications, 2018, 38 (11): 3139- 3143.
doi: 10.11772/j.issn.1001-9081.2018041251
|
25 |
ZHANG C , FANG Z . An improved K-means clustering algorithm[J]. Journal of Information and Computational Science, 2013, 10 (1): 193- 199.
|
26 |
AGGARWAL A, DESHPANDE A, KANNAN R. Adaptive sampling for k-means clustering[C]//Proc. of the 12th International Workshop and 13th Workshop on Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2009: 15-28.
|
27 |
杨俊闯, 赵超. K-Means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55 (23): 7- 14, 63.
|
|
YANG J C , ZHAO C . Survey on K-means clustering algorithm[J]. Computer Engineering and Applications, 2019, 55 (23): 7- 14, 63.
|
28 |
ZHU J B , WANG H Z , TSOU B K , et al. Active learning with sampling by uncertainty and density for data annotations[J]. IEEE Trans.on Audio, Speech, and Language Processing, 2010, 18 (6): 1323- 1331.
doi: 10.1109/TASL.2009.2033421
|
29 |
KEE S , CASTILLO E D , RUNGER G . Query-by-committee improvement with diversity and density in batch active learning[J]. Information Sciences, 2018, 454-455, 401- 418.
doi: 10.1016/j.ins.2018.05.014
|
30 |
BEYGELZIMER A, DASGUPTA S, LANGFORD J. Importance weighted active learning[C]//Proc.of the 26th Annual International Conference on Machine Learning, 2009: 49-56.
|
31 |
ROWEIS S. Binary alphadigits[EB/OL].[2020-03-06]. http://cs.nyu.edu/~roweis/data/binaryalphadigs.mat.
|
32 |
LAKE B M , SALAKHUTDINOV R , TENENBAUM J B . Human-level concept learning through probabilistic program induction[J]. Science, 2015, 350 (6266): 1332- 1338.
doi: 10.1126/science.aab3050
|