1 |
KONG S H , KIM M , HOANG L M . Automatic LPI radar waveform recognition using CNN[J]. IEEE Access, 2018, 6, 4207- 4219.
doi: 10.1109/ACCESS.2017.2788942
|
2 |
STAILEY J E , HONDL K D . Multifunction phased array radar for aircraft and weather surveillance[J]. Proceedings of the IEEE, 2016, 104 (3): 649- 659.
doi: 10.1109/JPROC.2015.2491179
|
3 |
ZHANG H W , XIE J W , WEN L U , et al. A scheduling method based on a hybrid genetic particle swarm algorithm for multifunction phased array radar[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18 (11): 1806- 1816.
|
4 |
OU J , CHEN Y G , ZHAO F , et al. Method for operating mode identification of multi-function radars based on predictive state representations[J]. IET Radar, Sonar & Navigation, 2017, 11 (3): 426- 433.
|
5 |
孟祥豪, 罗景青. 相控阵雷达搜索模式转换样本的序列匹配提取方法[J]. 航空学报, 2014,
doi: 10.7527/S1000-6893.2014.0276
|
|
MENG X H , LUO J Q . Sequence matching extraction method of phased array radar search pattern conversion samples[J]. Acta Aeronautica et Astronautica Sinica, 2014,
doi: 10.7527/S1000-6893.2014.0276
|
6 |
张玉虎, 周正. Needleman-Wunsch算法的改进[J]. 火力与指挥控制, 2019, 44 (5): 107- 111.
|
|
ZHANG Y H , ZHOU Z . Improvement of Needleman-Wunsch algorithm[J]. Fire Control and Command Control, 2019, 44 (5): 107- 111.
|
7 |
MA S , WANG Y G , LIU Z , et al. A method for search schema re-cognition of multifunction radars based on sequence alignment[J]. Acta Electronica Sinica, 2012, 40 (7): 1434- 1439.
|
8 |
周志文, 黄高明, 王雪宝, 等. 基于联合协作表示的特定辐射源识别[J]. 系统工程与电子技术, 2019, 41 (4): 724- 729.
|
|
ZHOU Z W , HUANG G M , WANG X B , et al. Specific radiation source identification based on joint cooperative representation[J]. Systems Engineering and Electronics, 2019, 41 (4): 724- 729.
|
9 |
KANG N X, HE M H, HAN J, et al. Radar emitter fingerprint recognition based on bispectrum and SURF feature[C]//Proc.of the IEEE CIE International Conference on Radar, 2017.
|
10 |
CHEN W B , FU K , ZUO J W , et al. Radar emitter classification for large data set based on weighted-xgboost[J]. IET Radar, Sonar & Navigation, 2017, 11 (8): 1203- 1207.
|
11 |
ZHANG M , DIAO M , GAO L P , et al. Neural networks for radar waveform recognition[J]. Symmetry, 2017, 9 (5): 75.
doi: 10.3390/sym9050075
|
12 |
YANG Q , SUN S L . Radar emitter recognition based on particle swarm optimization algorithm[J]. Laser Journal, 2018, 16 (8): 56- 68.
|
13 |
KONG M X, ZHANG J, LIU W F, et al. Radar emitter identification based on deep convolutional neural network[C]//Proc.of the International Conference on Control, Automation and Information Sciences, 2018.
|
14 |
WANG X B , HUANG G M , ZHOU Z W , et al. Radar emitter recognition based on the energy cumulant of short time Fourier transform and reinforced deep belief network[J]. Sensors, 2018, 18 (9): 3103.
doi: 10.3390/s18093103
|
15 |
GAO J P , SHEN L X , GAO L P . Modulation recognition for radar emitter signals based on convolutional neural network and fusion features[J]. Transactions on Emerging Telecommunications Technologies, 2019, 30 (12)
|
16 |
关欣, 孙贵东, 郭强, 等. 基于区间数和证据理论的雷达辐射源参数识别[J]. 系统工程与电子技术, 2014, 36 (7): 1269- 1274.
|
|
GUAN X , SUN G D , GUO Q , et al. Radar radiation dource parameter identification based on interval number and evidence theory[J]. Systems Engineering and Electronics, 2014, 36 (7): 1269- 1274.
|
17 |
GAO Y , KHALIEL M , ZHENG F , et al. Rotman lens based hybrid analog-digital beamforming in massive MIMO systems: array architectures, beam selection algorithms and experiments[J]. IEEE Trans.on Vehicular Technology, 2017, 66 (10): 9134- 9148.
doi: 10.1109/TVT.2017.2714693
|
18 |
WU L , BAHU P , PALOMAR D P . Cognitive radar-based sequence design via SINR maximization[J]. IEEE Trans.on Signal Processing, 2017, 65 (3): 779- 793.
doi: 10.1109/TSP.2016.2621723
|
19 |
WANG S Q , BAI J , HUANG X Y , et al. Analysis of radar emitter signal sorting and recognition model structure[J]. Procedia Computer Science, 2019, 154, 500- 503.
doi: 10.1016/j.procs.2019.06.076
|
20 |
OU J , CHEN Y G , ZHAO F , et al. Novel approach for the recognition and prediction of multi-function radar behaviours based on predictive state representations[J]. Sensors, 2017, 17 (3): 632- 635.
doi: 10.3390/s17030632
|
21 |
XU C C , ZHOU Q S , ZHANG J Y , et al. Radar emitter re-cognition based on ambiguity function features with derivative constraint on smoothing[J]. Acta Electronica Sinica, 2018, 46 (7): 1663- 1668.
|
22 |
WANG Q , ZHOU D Y , ZHANG K . UCAV radar mode ma-nagement algorithm based on FDT[J]. Computer Simulation, 2011, 1 (4): 212- 215.
|
23 |
GERGELY M , GAEERTT T J . Impact of the natural variability in snowflake diameter, aspect ratio, and orientation on mo-deled snowfall radar reflectivity[J]. Journal of Geophysical Research Atmospheres, 2016, 121 (20): 236- 252.
|
24 |
FAN X L , LI T , SU S Y . Intrapulse modulation type recognition for pulse compression radar signal[J]. Journal of Applied Remote Sensing, 2017, 11 (3): 035018.
|
25 |
CAYIR O , CANDAN C . Performance improvement of time-balance radar schedulers through decision policies[J]. IEEE Trans.on Aerospace and Electronic Systems, 2018, 54 (4): 1679- 1691.
doi: 10.1109/TAES.2018.2798418
|
26 |
NGUYEN C M , CHANDRASEKAR V . Electronic scan stra-tegy for phased array weather radar using a space-time characterization model[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34 (4): 921- 938.
doi: 10.1175/JTECH-D-16-0021.1
|