系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (3): 610-622.doi: 10.12305/j.issn.1001-506X.2021.03.03
收稿日期:
2020-03-31
出版日期:
2021-03-01
发布日期:
2021-03-16
作者简介:
田睿(1996-), 男, 硕士研究生, 主要研究方向为列车控制系统上的GNSS应用。E-mail:基金资助:
Received:
2020-03-31
Online:
2021-03-01
Published:
2021-03-16
摘要:
在全球导航卫星系统(global navigation satellite system, GNSS)的应用中, 电离层垂直总电子含量(vertical total electron content, VTEC)是直接决定电离层延迟误差的重要参数。为提高其短期预报精度, 在综合考虑地磁扰动影响的基础上, 提出了小波分解与Prophet框架融合的时间序列预报模型, 并基于全球电离层模型(global ionosphere model, GIM)格网数据进行了对比实验。通过均方根误差、平均绝对误差、平均绝对百分比误差3项指标评估了预测结果, 并分析其预报残差。结果表明在不同条件(电离层平静期与活跃期)下, 该模型的预报精度均较高, 优于未改进的Prophet框架, 显著优于自回归移动平均(autoregressive integrated moving average, ARIMA)模型, 在中、高纬度地区有良好的适用性。
中图分类号:
田睿, 董绪荣. 小波分解与Prophet框架融合的电离层VTEC预报模型[J]. 系统工程与电子技术, 2021, 43(3): 610-622.
Rui TIAN, Xurong DONG. Ionosphere VTEC prediction model fused with wavelet decomposition and Prophet framework[J]. Systems Engineering and Electronics, 2021, 43(3): 610-622.
表3
参数设置"
参数 | 说明 | 设置值 | |
τ | 通过changepoint_prior_scale属性进行设置 | 活跃期 低纬度 | 高频:0.50 低频:0.35 |
活跃期 中纬度 | 高频:0.50 低频:0.30 | ||
活跃期 高纬度 | 高频:0.05 低频:0.05 | ||
平静期 低纬度 | 高频:0.50 低频:0.05 | ||
平静期 中纬度 | 高频:0.05 低频:0.05 | ||
平静期 高纬度 | 高频:0.05 低频:0.03 | ||
增长模型 | Linear(即分段线性模型) | 通过Growth属性进行设置 | |
N | 3 | 通过add_seasonality方法中的fourier_order进行设置 | |
σ | 10 | 通过Seasonality_prior_scale属性进行设置 | |
υ | 10 | 通过holidays_prior_scale属性进行设置 | |
参数估计方法 | MAP | 默认设置, 无需改动 |
表4
电离层平静期不同实验区域内各项指标的均值"
预报模型 | 预报天数 | 低纬度地区 | 中纬度地区 | 高纬度地区 | ||||||||
RMSE/TECu | MAE/TECu | MAPE/% | RMSE/TECu | MAE/TECu | MAPE/% | RMSE/TECu | MAE/TECu | MAPE/% | ||||
本文改进 | 1 | 2.047 | 1.575 | 11.32 | 0.673 | 0.566 | 7.75 | 0.620 | 0.523 | 16.97 | ||
2 | 1.827 | 1.489 | 10.73 | 0.858 | 0.745 | 11.05 | 0.685 | 0.593 | 20.43 | |||
3 | 2.272 | 1.789 | 13.38 | 1.095 | 0.978 | 13.70 | 1.069 | 0.953 | 40.44 | |||
Prophet | 1 | 2.065 | 1.624 | 12.50 | 0.732 | 0.624 | 8.72 | 0.665 | 0.568 | 18.45 | ||
2 | 1.827 | 1.510 | 11.92 | 0.973 | 0.854 | 12.71 | 0.804 | 0.711 | 24.81 | |||
3 | 2.437 | 1.980 | 15.83 | 1.255 | 1.147 | 16.11 | 1.267 | 1.143 | 48.38 | |||
ARIMA | 1 | 3.459 | 2.878 | 25.14 | 1.915 | 1.569 | 18.96 | 1.111 | 0.886 | 25.84 | ||
2 | 3.927 | 3.328 | 28.64 | 2.120 | 1.839 | 23.45 | 1.446 | 1.233 | 36.73 | |||
3 | 4.657 | 3.842 | 35.04 | 2.142 | 1.828 | 24.02 | 1.619 | 1.470 | 56.17 |
表5
电离层活跃期不同实验区域内各项指标的均值"
预报模型 | 预报天数 | 低纬度地区 | 中纬度地区 | 高纬度地区 | ||||||||
RMSE/TECu | MAE/TECu | MAPE/% | RMSE/TECu | MAE/TECu | MAPE/% | RMSE/TECu | MAE/TECu | MAPE/% | ||||
本文改进 | 1 | 2.306 | 1.831 | 11.01 | 1.169 | 0.977 | 10.01 | 0.663 | 0.539 | 10.80 | ||
2 | 3.232 | 2.620 | 15.58 | 1.086 | 0.919 | 8.65 | 0.782 | 0.608 | 11.08 | |||
3 | 2.581 | 2.152 | 13.70 | 1.386 | 1.078 | 9.70 | 0.916 | 0.806 | 13.18 | |||
Prophet | 1 | 2.342 | 1.864 | 11.43 | 1.310 | 1.121 | 11.62 | 0.678 | 0.554 | 11.17 | ||
2 | 3.277 | 2.649 | 15.72 | 1.305 | 1.156 | 11.01 | 0.796 | 0.623 | 11.51 | |||
3 | 2.600 | 2.136 | 13.63 | 1.651 | 1.359 | 12.84 | 0.921 | 0.809 | 13.38 | |||
ARIMA | 1 | 5.581 | 4.700 | 30.55 | 2.628 | 2.278 | 23.39 | 1.782 | 1.522 | 29.75 | ||
2 | 5.980 | 4.906 | 36.12 | 2.824 | 2.484 | 24.48 | 2.115 | 1.845 | 34.53 | |||
3 | 5.898 | 5.004 | 34.79 | 3.826 | 3.296 | 31.67 | 2.345 | 1.979 | 32.24 |
表6
电离层平静期不同实验区域内预报残差Δ统计表"
预报模型 | 实验区域 | Δ<1 TECu | 1 TECu≤Δ<2 TECu | 2 TECu≤Δ<3 TECu | Δ≥3 TECu | ||||||||
第1日 | 第2日 | 第3日 | 第1日 | 第2日 | 第3日 | 第1日 | 第2日 | 第3日 | 第1日 | 第2日 | 第3日 | ||
本文改进模型 | 低纬度 | 42.59% | 39.81% | 43.06% | 29.17% | 32.41% | 23.61% | 16.21% | 16.20% | 19.43% | 12.04% | 11.58% | 13.88% |
中纬度 | 84.26% | 70.37% | 51.38% | 15.27% | 28.23% | 45.38% | 0.46% | 1.38% | 3.23% | 0.00% | 0.00% | 0.00% | |
高纬度 | 88.20% | 84.49% | 58.57% | 11.80% | 15.51% | 36.33% | 0.00% | 0.00% | 5.09% | 0.00% | 0.00% | 0.00% | |
Prophet | 低纬度 | 40.27% | 38.43% | 35.19% | 33.34% | 35.64% | 24.08% | 13.89% | 16.20% | 24.52% | 12.50% | 9.72% | 16.19% |
中纬度 | 79.17% | 62.97% | 39.83% | 20.37% | 32.87% | 53.69% | 0.46% | 4.17% | 6.02% | 0.00% | 0.00% | 0.46% | |
高纬度 | 86.58% | 75.01% | 45.84% | 13.42% | 24.99% | 42.58% | 0.00% | 0.00% | 11.57% | 0.00% | 0.00% | 0.00% | |
ARIMA | 低纬度 | 27.31% | 19.45% | 20.83% | 19.92% | 18.52% | 14.81% | 15.27% | 16.20% | 17.59% | 37.49% | 45.83% | 46.75% |
中纬度 | 40.74% | 25.92% | 31.49% | 29.63% | 30.56% | 26.39% | 14.82% | 27.77% | 27.32% | 14.82% | 15.73% | 14.81% | |
高纬度 | 66.66% | 48.16% | 34.26% | 25.01% | 31.94% | 39.36% | 6.02% | 14.36% | 22.68% | 2.31% | 5.55% | 3.70% |
表7
电离层活跃期不同实验区域内预报残差Δ统计表"
预报模型 | 实验区域 | Δ<1 TECu | 1 TECu≤Δ<2 TECu | 2 TECu≤Δ<3 TECu | Δ≥3 TECu | ||||||||
第1日 | 第2日 | 第3日 | 第1日 | 第2日 | 第3日 | 第1日 | 第2日 | 第3日 | 第1日 | 第2日 | 第3日 | ||
本文改进模型 | 低纬度 | 31.94% | 23.62% | 25.46% | 36.11% | 24.54% | 29.62% | 15.27% | 18.06% | 20.84% | 16.67% | 33.79% | 24.08% |
中纬度 | 55.08% | 59.26% | 56.48% | 34.72% | 33.79% | 34.26% | 9.25% | 6.93% | 5.56% | 0.92% | 0.00% | 3.70% | |
高纬度 | 86.57% | 87.04% | 68.06% | 13.43% | 8.33% | 28.71% | 0.00% | 4.63% | 3.24% | 0.00% | 0.00% | 0.00% | |
Prophet | 低纬度 | 33.33% | 24.53% | 29.17% | 32.88% | 18.06% | 23.14% | 16.67% | 22.68% | 22.22% | 17.13% | 34.73% | 25.47% |
中纬度 | 48.61% | 48.14% | 43.06% | 39.34% | 37.04% | 39.81% | 10.17% | 13.42% | 11.11% | 1.84% | 1.38% | 6.02% | |
高纬度 | 84.72% | 86.11% | 67.13% | 15.28% | 9.26% | 29.63% | 0.00% | 4.63% | 3.24% | 0.00% | 0.00% | 0.00% | |
ARIMA | 低纬度 | 20.38% | 23.14% | 14.35% | 19.91% | 11.11% | 13.89% | 10.64% | 10.19% | 16.67% | 49.08% | 55.55% | 55.08% |
中纬度 | 22.22% | 17.12% | 17.59% | 24.08% | 22.23% | 12.50% | 25.47% | 25.01% | 16.19% | 28.24% | 35.64% | 53.70% | |
高纬度 | 40.28% | 31.94% | 32.42% | 31.94% | 29.16% | 23.16% | 14.82% | 18.97% | 22.68% | 12.97% | 19.91% | 21.76% |
1 |
GOODMAN J M . Operational communication systems and relationships to the ionosphere and space weather[J]. Advances in Space Research, 2005, 36 (12): 2241- 2252.
doi: 10.1016/j.asr.2003.05.063 |
2 |
GURNETT D A , HUFF R L , MORGAN D D , et al. An overview of radar soundings of the Martian ionosphere from the mars express spacecraft[J]. Advances in Space Research, 2008, 41 (9): 1335- 1346.
doi: 10.1016/j.asr.2007.01.062 |
3 |
ZHAO Q L , WANG Y T , GU S F , et al. Refining ionospheric delay modeling for undifferenced and uncombined GNSS data processing[J]. Journal of Geodesy, 2019, 93 (4): 545- 560.
doi: 10.1007/s00190-018-1180-9 |
4 |
KOUCKÁ K P , PODOLSKÁ K , POTUŽNÍKOVÁ K , et al. Evidence of vertical coupling: meteorological storm Fabienne on 23 September 2018 and its related effects observed up to the ionosphere[J]. Annales Geophysicae Discussions, 2020, 38 (1): 73- 93.
doi: 10.5194/angeo-38-73-2020 |
5 | FRON A, KRANKOWSKI A, HERNÁNDEZ-PAJARES M, et al. Reference total electron content: global 30-day average empirical VTEC maps for rapid assessment of weather-climate deviation[C]//Proc.of the EGU General Assembly Conference Abstracts, 2018: 17356. |
6 |
LIU T , ZHANG B C , YUAN Y B , et al. Real-time precise point positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling[J]. Journal of Geodesy, 2018, 92 (11): 1267- 1283.
doi: 10.1007/s00190-018-1118-2 |
7 |
李志刚, 程宗颐, 冯初刚, 等. 电离层预报模型研究[J]. 地球物理学报, 2007, 50 (2): 327- 337.
doi: 10.3321/j.issn:0001-5733.2007.02.001 |
LI Z G , CHENG Z Y , FENG C G , et al. Research on ionospheric prediction models[J]. Chinese Journal of Geophysics, 2007, 50 (2): 327- 337.
doi: 10.3321/j.issn:0001-5733.2007.02.001 |
|
8 | 范国清, 王威, 郗晓宁. 基于广义回归神经网络的电离层VTEC建模[J]. 测绘学报, 2010, 39 (1): 16- 21. |
FAN G Q , WANG W , XI X N . Modeling of ionospheric VTEC based on generalized regression neural network[J]. Journal of Surveying and Mapping, 2010, 39 (1): 16- 21. | |
9 | RATNAM D V , DINESH B V , TEJASWI B , et al. TEC prediction model using neural networks over a low latitude GPS station[J]. International Journal of Soft Computing and Engineering, 2012, 2, 517- 521. |
10 |
ACHARYA R , ROY B , SIVARAMAN M R , et al. Prediction of ionospheric total electron content using adaptive neural network with in-situ learning algorithm[J]. Advances in space research, 2011, 47 (1): 115- 123.
doi: 10.1016/j.asr.2010.08.016 |
11 |
HABARULEMA J B , MCKINNELL L A , CILLIERS P J . Prediction of global positioning system total electron content using neural networks over South Africa[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69 (15): 1842- 1850.
doi: 10.1016/j.jastp.2007.09.002 |
12 |
刘先冬, 宋力杰, 杨晓晖, 等. 基于小波神经网络的电离层TEC短期预报[J]. 海洋测绘, 2010, 30 (5): 49- 51.
doi: 10.3969/j.issn.1671-3044.2010.05.014 |
LIU X D , SONG L J , YANG X H , et al. Short-term prediction of ionosphere TEC based on wavelet neural network[J]. Ocean Surveying and Mapping, 2010, 30 (5): 49- 51.
doi: 10.3969/j.issn.1671-3044.2010.05.014 |
|
13 |
ERDOGˇAN H , ARSLAN N . Identification of vertical total electron content by time series analysis[J]. Digital Signal Processing, 2009, 19 (4): 740- 749.
doi: 10.1016/j.dsp.2008.07.002 |
14 | LI X H, GUO D Z. Modeling and prediction of ionospheric total electron content by time series analysis[C]//Proc.of the 2nd International Conference on Advanced Computer Control, 2010: 375-379. |
15 | 张小红, 任晓东, 吴风波, 等. 自回归移动平均模型的电离层总电子含量短期预报[J]. 测绘学报, 2013, 43 (2): 118- 124. |
ZHANG X H , REN X D , WU F B , et al. Short-term prediction of total ion content of ionosphere in autoregressive moving average model[J]. Journal of Surveying and Mapping, 2013, 43 (2): 118- 124. | |
16 | 李秀海, 郭达志. 应用半参数AR模型的电离层TEC建模与预测[J]. 测绘科学, 2011, 36 (2): 149- 151. |
LI X H , GUO D Z . Modeling and prediction of ionospheric TEC using semiparametric AR model[J]. Science of Surveying and Mapping, 2011, 36 (2): 149- 151. | |
17 | 汤俊, 姚宜斌, 陈鹏, 等. 利用EMD方法改进电离层TEC预报模型[J]. 武汉大学学报:信息科学版, 2013, 38 (4): 408- 411. |
TANG J , YAO Y B , CHEN P , et al. Improving ionospheric TEC prediction model using EMD method[J]. Journal of Wuhan University: Information Science Edition, 2013, 38 (4): 408- 411. | |
18 | 安家春, 宁新国, 王泽民, 等. 利用球冠谐函数和时间序列分析预报南极地区电离层[J]. 武汉大学学报:信息科学版, 2015, 40 (5): 677- 681. |
AN J C , NING X G , WANG Z M , et al. Prediction of the ionosphere in Antarctica using spherical crown harmonic function and time series analysis[J]. Wuhan University Journal: Information Science Edition, 2015, 40 (5): 677- 681. | |
19 |
田祥雨, 刘立龙, 杨可可, 等. BP神经网络和ARIMA模型的变权组合电离层TEC预报[J]. 桂林理工大学学报, 2019, 39 (4): 899- 904.
doi: 10.3969/j.issn.1674-9057.2019.04.014 |
TIAN X Y , LIU L L , YANG K K , et al. Variable weight combination ionospheric TEC prediction of BP neural network and ARIMA model[J]. Journal of Guilin University of Technology, 2019, 39 (4): 899- 904.
doi: 10.3969/j.issn.1674-9057.2019.04.014 |
|
20 |
CIECKO A , GRUNWALD G . Klobuchar, NeQuick G, and EGNOS ionospheric models for GPS/EGNOS single-frequency positioning under 6-12 september 2017 space weather events[J]. Applied Sciences, 2020, 10 (5): 1553.
doi: 10.3390/app10051553 |
21 | 陈亚楠, 徐继生. 顶部电离层离子密度经度结构的特征及其随季节、太阳活动和倾角的变化[J]. 地球物理学报, 2015, 58 (6): 1843- 1852. |
CHEN Y N , XU J S . Characteristics of the ionospheric longitude structure of the top ionosphere and its changes with season, solar activity and dip angle[J]. Chinese Journal of Geophysics, 2015, 58 (6): 1843- 1852. | |
22 | 翟笃林, 张学民, 熊攀, 等. Prophet时序预测模型在电离层TEC异常探测中的应用[J]. 地震, 2019, 39 (2): 46- 62. |
ZHAI D L , ZHANG X M , XIONG P , et al. Application of prophet time series prediction model in ionospheric TEC anomaly detection[J]. Earthquake, 2019, 39 (2): 46- 62. | |
23 |
TAYLOR S J , LETHAM B . Forecasting at scale[J]. The American Statistician, 2018, 72 (1): 37- 45.
doi: 10.1080/00031305.2017.1380080 |
24 | 赵丹宁, 高蕊, 雷雨. 利用小波分解改进极移预报模型[J]. 武汉大学学报:信息科学版, 2019, 44 (12): 1797- 1801. |
ZHAO D N , GAO R , LEI Y . Improving polar motion forecasting model using wavelet decomposition[J]. Journal of Wuhan University: Information Science Edition, 2019, 44 (12): 1797- 1801. | |
25 | 李丽萍, 段桂华, 王建新. 基于Prophet框架的银行网点备付金预测方法[J]. 中南大学学报(自然科学版), 2019, 50 (1): 75- 82. |
LI L P , DUAN G H , WANG J X . Prediction method of bank branch reserve fund based on Prophet framework[J]. Journal of Central South University(Science and Technology), 2019, 50 (1): 75- 82. | |
26 |
DONG J C , DAI W , TANG L , et al. Why do EMD-based methods improve prediction? A multiscale complexity perspective[J]. Journal of Forecasting, 2019, 38 (7): 714- 731.
doi: 10.1002/for.2593 |
27 |
BÜYÜKŞAHIN Ü Ç , ERTEKIN Ş . Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition[J]. Neurocomputing, 2019, 361, 151- 163.
doi: 10.1016/j.neucom.2019.05.099 |
28 |
AN X L , JIANG D X , LIU C , et al. Wind farm power prediction based on wavelet decomposition and chaotic time series[J]. Expert Systems with Applications, 2011, 38 (9): 11280- 11285.
doi: 10.1016/j.eswa.2011.02.176 |
29 |
ZHANG K Y , GEN? AY R , YAZGAN M E . Application of wavelet decomposition in time-series forecasting[J]. Economics Letters, 2017, 158, 41- 46.
doi: 10.1016/j.econlet.2017.06.010 |
30 | 刘立龙, 陈雨田, 黎峻宇, 等. 活跃期区域电离层总电子短期预报及适用性分析[J]. 武汉大学学报:信息科学版, 2019, 44 (12): 1757- 1764. |
LIU L L , CHEN Y T , LI J Y , et al. Short-term prediction and applicability analysis of total ionosphere in the active period[J]. Wuhan University Journal: Information Science Edition, 2019, 44 (12): 1757- 1764. | |
31 | 鲍亚东, 刘长建, 柴洪洲. 小波分解改进电离层VTEC时间序列预报模型[J]. 大地测量与地球动力学, 2015, 35 (5): 784- 787. |
BAO Y D , LIU C J , CHAI H Z . Wavelet decomposition improves ionospheric VTEC time series prediction model[J]. Geodesy and Geodynamics, 2015, 35 (5): 784- 787. | |
32 | 王秀杰, 封桂敏, 耿庆柱. 小波分析组合模型在日径流预测中的应用研究[J]. 自然资源学报, 2014, 29 (5): 885- 893. |
WANG X J , FENG G M , GENG Q Z . Application research of wavelet analysis combined model in daily runoff prediction[J]. Journal of Natural Resources, 2014, 29 (5): 885- 893. | |
33 |
周惠成, 彭勇. 基于小波分解的月径流预测校正模型研究[J]. 系统仿真学报, 2007, 19 (5): 1104- 1108.
doi: 10.3969/j.issn.1004-731X.2007.05.042 |
ZHOU H C , PENG Y . Research on prediction model of monthly runoff based on wavelet decomposition[J]. Journal of System Simulation, 2007, 19 (5): 1104- 1108.
doi: 10.3969/j.issn.1004-731X.2007.05.042 |
|
34 | 张华, 陈小宏, 杨海燕. 地震信号去噪的最优小波基选取方法[J]. 石油地球物理勘探, 2011, 46 (1): 70- 171.70-75, 164, 170-171 |
ZHANG H , CHEN X H , YANG H Y . Optimal wavelet base selection method for seismic signal denoising[J]. Petroleum Geophysical Prospecting, 2011, 46 (1): 70- 171.70-75, 164, 170-171 | |
35 | 李彬, 夏虹. 基于最优小波基的主泵裂纹转子特征识别研究[J]. 振动与冲击, 2014, 33 (21): 207- 212. |
LI B , XIA H . Research on crack recognition of main pump crack rotor based on optimal wavelet basis[J]. Vibration and Shock, 2014, 33 (21): 207- 212. | |
36 | 李月琴, 栗苹, 闫晓鹏, 等. 无线电引信信号去噪的最优小波基选择[J]. 北京理工大学学报, 2008, 28 (8): 723- 726. |
LI Y Q , LI P , YAN X P , et al. Optimal wavelet basis selection for radio fuze signal denoising[J]. Journal of Beijing Institute of Technology, 2008, 28 (8): 723- 726. | |
37 | TOUFIK B , MOKHTAR N . The wavelet transform for image processing applications[J]. Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology, 2012, (17): 395- 422. |
38 | 孙延奎. 小波分析及其应用[M]. 北京: 机械工业出版社, 2005. |
SUN Y K . Wavelet analysis and its application[M]. Beijing: Machinery Industry Press, 2005. | |
39 |
AHUJA N , LERTRATTANAPANICH S , BOSE N K . Properties determining choice of mother wavelet[J]. IEEE Proceedings-vision, Image and Signal Processing, 2005, 152 (5): 659- 664.
doi: 10.1049/ip-vis:20045034 |
40 | SINGH V P, FIORENTINO M. A historical perspective of entropy applications in water resources[M]. Springer, Dordrecht, 1992. |
41 | 桑燕芳, 王中根, 刘昌明. 水文时间序列分析方法研究进展[J]. 地理科学进展, 2013, 32 (1): 20- 30. |
SANG Y F , WANG Z G , LIU C M . Research progress of hydrological time series analysis methods[J]. Advances in Geography, 2013, 32 (1): 20- 30. | |
42 |
杨薛明, 边继飞, 朱霄珣, 等. 基于最大熵混沌时间序列的支持向量机短期风速预测模型研究[J]. 太阳能学报, 2016, 37 (9): 2173- 2179.
doi: 10.3969/j.issn.0254-0096.2016.09.001 |
YANG X M , BIAN J F , ZHU X X , et al. Research on support vector machine short-term wind speed prediction model based on maximum entropy chaotic time series[J]. Journal of Solar Energy, 2016, 37 (9): 2173- 2179.
doi: 10.3969/j.issn.0254-0096.2016.09.001 |
|
43 | SINGH V . Entropy-based parameter estimation in hydrology[M]. Berlin: Springer Science & Business Media, 1998. |
44 | 孔豫龙.实时单点定位电离层延迟改正方法研究[D].郑州: 信息工程大学, 2018. |
KONG Y L. Research on ionospheric delay correction method for real-time single-point positioning[D]. Zhengzhou: Information Engineering University, 2018. | |
45 |
黄林峰, 黄江, 邓柏昌, 等. 利用单台地磁数据估算Ap和Kp指数的可行性分析[J]. 地震地磁观测与研究, 2011, 32 (3): 45- 51.
doi: 10.3969/j.issn.1003-3246.2011.03.008 |
HUANG L F , HUANG J , DENG B C , et al. Feasibility analysis of estimating Ap and Kp indices using single geomagnetic data[J]. Seismological and Geomagnetic Observation and Research, 2011, 32 (3): 45- 51.
doi: 10.3969/j.issn.1003-3246.2011.03.008 |
[1] | 史朝卫, 孟相如, 康巧燕, 苏玉泽. 基于混合流量预测的虚拟网络拓扑重构方法[J]. 系统工程与电子技术, 2021, 43(5): 1382-1388. |
[2] | 王泊涵, 吴超, 柯文俊, 郑恺之, 付修锋, 江山. 基于概率图的作战任务智能规划方法[J]. 系统工程与电子技术, 2020, 42(12): 2795-2801. |
[3] | 刘立芳, 杨海霞, 齐小刚. 基于线性判别分析的时频域特征提取算法[J]. 系统工程与电子技术, 2019, 41(10): 2184-2190. |
[4] | 范庚,马登武,吴明辉,孟上. 电子系统状态时间序列预测的优化相关向量机方法[J]. 系统工程与电子技术, 2013, 35(9): 2011-2015. |
[5] | 刘杨, 金天. 小波降噪在微弱GPS信号捕获中的应用[J]. Journal of Systems Engineering and Electronics, 2011, 33(4): 842-846. |
[6] | 刘明骞, 李兵兵, 唐宁洁. 多径信道下ZP-OFDM信号的时域参数盲估计[J]. Journal of Systems Engineering and Electronics, 2011, 33(11): 2531-2535. |
[7] | 张磊, 李行善, 于劲松, 万九卿. 基于关联向量机回归的故障预测算法[J]. Journal of Systems Engineering and Electronics, 2010, 32(7): 1540-1543. |
[8] | 王海1,范文晶1,许建华2,张超2. 小波脊线法在暂态信号检测中的应用[J]. Journal of Systems Engineering and Electronics, 2010, 32(1): 5-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||