1 |
王雪瑶, 宋博. 美国国防高级研究计划局启动"地球同步轨道卫星自主服务"项目[J]. 国际太空, 2016, 37 (11): 33- 38.
|
|
WANG X Y , SONG B . DARPA started the RSGS program[J]. Space International, 2016, 37 (11): 33- 38.
|
2 |
GUO Y , HUANG B , SONG S M , et al. Robust saturated finite-time attitude control for spacecraft using integral sliding mode[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (2): 440- 446.
doi: 10.2514/1.G003520
|
3 |
CAO T , GONG H J , HAN B . Sliding mode fault tolerant attitude control scheme for spacecraft with actuator faults[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2019, 36 (1): 123- 131.
|
4 |
CONG B L , LIU X D , CHEN Z . Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers[J]. Aerospace Science and Technology, 2013, 30 (1): 1- 7.
doi: 10.1016/j.ast.2013.05.005
|
5 |
THAKUR D , SRIKANT S , AKELLA M R . Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters[J]. Journal of Guidance, Control, and Dynamics, 2015, 38 (1): 41- 52.
doi: 10.2514/1.G000457
|
6 |
SUN L , ZHENG Z W . Saturated adaptive hierarchical fuzzy attitude-tracking control of rigid spacecraft with modeling and measurement uncertainties[J]. IEEE Trans.on Industrial Electronics, 2019, 66 (5): 3742- 3751.
doi: 10.1109/TIE.2018.2856204
|
7 |
BI X T , SHI X P . Attitude stabilization of rigid spacecraft implemented in backstepping control with input delay[J]. Journal of Systems Engineering and Electronics, 2017, 28 (5): 955- 962.
doi: 10.21629/JSEE.2017.05.13
|
8 |
李波, 胡庆雷, 石忠, 等. 基于反步法与动态控制分配的航天器姿态机动控制[J]. 控制理论与应用, 2012, (11): 1419- 1425.
|
|
LI B , HU Q L , SHI Z , et al. Backstepping and dynamic control-allocation for attitude maneuver spacecraft with redundant reaction fly-wheels[J]. Control Theory & Applications, 2012, (11): 1419- 1425.
|
9 |
WU Y H , ZHENG M H , HE W , et al. High precision attitude dynamic tracking control of a moving space target[J]. Chinese Journal of Aeronautics, 2019, 32 (10): 2324- 2336.
doi: 10.1016/j.cja.2019.06.005
|
10 |
孙明轩, 黄宝健. 迭代学习控制[M]. 北京: 国防工业出版社, 1999.
|
|
SUN M X , HUANG B J . Iterative learning control[M]. Beijing: National Defense Industry Press, 1999.
|
11 |
代明光, 齐蓉, 李兵强, 等. 具有自适应非线性增益的开环PD型迭代学习控制[J]. 系统工程与电子技术, 2020, 42 (3): 660- 666.
|
|
DAI M G , QI R , LI B Q , et al. Open-loop PD-type iterative learning control with adaptive nonlinear gain[J]. Systems Engineering and Electronics, 2020, 42 (3): 660- 666.
|
12 |
WANG D W . On D-type and P-type ILC designs and anticipatory approach[J]. International Journal of Control, 2000, 73 (10): 890- 901.
doi: 10.1080/002071700405879
|
13 |
WU B L , WANG D W , POH E K . High precision satellite attitude tracking control via iterative learning control[J]. Journal of Guidance, Control, and Dynamics, 2015, 38 (3): 528- 534.
doi: 10.2514/1.G000497
|
14 |
HU Q L , NIU G L , WANG C L . Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation[J]. Aerospace Science and Technology, 2018, 75 (4): 245- 253.
|
15 |
LEE H J , KIM Y D , KIM H S . Satellite attitude control with a modified iterative learning law for the decrease in the effectiveness of the actuator[J]. International Journal of Aeronautical & Space Sciences, 2010, 11 (2): 87- 97.
|
16 |
ZHANG L J , YU C M , ZHANG S F , et al. Optimal attitude trajectory planning method for CMG actuated spacecraft[J]. Proceedings of the Institution of Mechanical Engineers, 2018, 232 (1): 131- 142.
doi: 10.1177/0954410016687596
|
17 |
张佳为, 马克茂, 孟桂芝. 具有单框架控制力矩陀螺航天器的建模及可控性分析[J]. 系统工程与电子技术, 2012, 34 (4): 761- 766.
doi: 10.3969/j.issn.1001-506X.2012.04.22
|
|
ZHANG J W , MA K M , MENG G Z . Modeling of spacecraft attitude systems with single gimbal control moment gyros and controllability analysis[J]. Systems Engineering and Electronics, 2012, 34 (4): 761- 766.
doi: 10.3969/j.issn.1001-506X.2012.04.22
|
18 |
WIE B . Singularity escape/avoidance steering logic for control moment gyro systems[J]. Journal of Guidance, Control, and Dynamics, 2003, 28 (5): 948- 956.
|
19 |
KARLGAARD C D . Robust reorientation and power controller using flywheels and control moment gyroscopes[J]. Journal of Guidance, Control, and Dynamics, 2006, 29 (1): 217- 220.
doi: 10.2514/1.17113
|
20 |
WU Y H , HAN F , ZHANG S J , et al. Attitude agile maneuvering control for spacecraft equipped with hybrid actuators[J]. Journal of Guidance, Control, and Dynamics, 2018, 41 (3): 803- 812.
|
21 |
HUANG X H , JIA Y H , XU S J , et al. A new steering approach for VSCMGs with high precision[J]. Chinese Journal of Aeronautics, 2016, 29 (6): 1673- 1684.
doi: 10.1016/j.cja.2016.10.017
|
22 |
BRISTOW D A , THARAYIL M , ALLEYNE A G . A survey of iterative learning control[J]. IEEE Control Systems Magazine, 2006, 26 (3): 96- 114.
doi: 10.1109/MCS.2006.1636313
|
23 |
WIE B , LU J . Feedback control logic for spacecraft eigenaxis rotations under slew rate and control constraints[J]. Journal of Guidance, Control, and Dynamics, 1995, 18 (6): 1372- 1379.
doi: 10.2514/3.21555
|
24 |
WIE B , BAILEY D , HEIBERG C . Rapid multitarget acquisition and pointing control of agile spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2002, 25 (1): 96- 104.
doi: 10.2514/2.4854
|
25 |
KOJIMA H. Singularity analysis and steering control laws for adaptive-skew pyramid-type control moment gyros[C]//Proc.of the 62nd International Astronautical Congress, 2013: 120-137.
|
26 |
WU Y H , HAN F , HUA B , et al. Null motion strategy for spacecraft large angle agile maneuvering using hybrid actuators[J]. Acta Astronautica, 2017, 140 (11): 459- 468.
|