系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (2): 399-409.doi: 10.12305/j.issn.1001-506X.2021.02.15
夏博远(), 杨克巍(), 杨志伟(), 张小可(), 赵丹玲()
收稿日期:
2020-04-07
出版日期:
2021-02-01
发布日期:
2021-03-16
作者简介:
夏博远(1994-),男,博士研究生,主要研究方向为复杂系统相变研究、体系工程、装备组合评估与优化。E-mail:基金资助:
Boyuan XIA(), Kewei YANG(), Zhiwei YANG(), Xiaoke ZHANG(), Danling ZHAO()
Received:
2020-04-07
Online:
2021-02-01
Published:
2021-03-16
摘要:
杀伤网作为众多新型作战理念中均有涉及的概念,将替代杀伤链成为新型作战方式下战斗力生成的主要模式。本文基于杀伤网的评估,对传统的装备组合问题进行多目标优化。首先,基于多层网络模型,构建杀伤网的网络化描述方法。其次,基于杀伤网的特点,构建3个评估指标:冗余性指标、风险性指标、敏捷性指标,并给出了3个评估指标的计算模型。然后,构建了基于杀伤网评估指标的装备组合规划模型,并给出了基于启发式算法的装备组合多目标优化方法。最后,进行示例研究,通过评估两种具有不同装备组成和网络结构的杀伤网,对比其优劣,然后针对第一种包含无人装备的杀伤网进行装备组合优化,分别验证了评估模型的合理性以及优化模型的有效性。
中图分类号:
夏博远, 杨克巍, 杨志伟, 张小可, 赵丹玲. 基于杀伤网评估的装备组合多目标优化[J]. 系统工程与电子技术, 2021, 43(2): 399-409.
Boyuan XIA, Kewei YANG, Zhiwei YANG, Xiaoke ZHANG, Danling ZHAO. Multi-objective optimization of equipment portfolio based on kill-web evaluation[J]. Systems Engineering and Electronics, 2021, 43(2): 399-409.
表2
红方节点间的通信关系(示例1)"
r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9 | r10 | r11 | r12 | |
r1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r2 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r3 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
r4 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
r5 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
r6 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
r7 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
r8 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
r9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
r10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
r11 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
r12 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
表3
红方节点间的指控关系(示例1)"
r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9 | r10 | r11 | r12 | |
r1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r2 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r3 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
r4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
r6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
r8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
r9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
表11
目标权重试验集"
序号 | 权重值 | ||
1 | 0.1 | 0.1 | 0.8 |
2 | 0.1 | 0.2 | 0.7 |
3 | 0.1 | 0.3 | 0.6 |
4 | 0.1 | 0.4 | 0.5 |
5 | 0.1 | 0.5 | 0.4 |
6 | 0.1 | 0.6 | 0.3 |
7 | 0.1 | 0.7 | 0.2 |
8 | 0.1 | 0.8 | 0.1 |
9 | 0.2 | 0.1 | 0.7 |
10 | 0.2 | 0.2 | 0.6 |
11 | 0.2 | 0.3 | 0.5 |
12 | 0.2 | 0.4 | 0.4 |
13 | 0.2 | 0.5 | 0.3 |
14 | 0.2 | 0.6 | 0.2 |
15 | 0.2 | 0.7 | 0.1 |
16 | 0.3 | 0.1 | 0.6 |
17 | 0.3 | 0.2 | 0.5 |
18 | 0.3 | 0.3 | 0.4 |
19 | 0.3 | 0.4 | 0.3 |
20 | 0.3 | 0.5 | 0.2 |
21 | 0.3 | 0.6 | 0.1 |
22 | 0.4 | 0.1 | 0.5 |
23 | 0.4 | 0.2 | 0.4 |
24 | 0.4 | 0.3 | 0.3 |
25 | 0.4 | 0.4 | 0.2 |
26 | 0.4 | 0.5 | 0.1 |
27 | 0.5 | 0.1 | 0.4 |
28 | 0.5 | 0.2 | 0.3 |
29 | 0.5 | 0.3 | 0.2 |
30 | 0.5 | 0.4 | 0.1 |
31 | 0.6 | 0.1 | 0.3 |
32 | 0.6 | 0.2 | 0.2 |
33 | 0.6 | 0.3 | 0.1 |
34 | 0.7 | 0.1 | 0.2 |
35 | 0.7 | 0.2 | 0.1 |
36 | 0.8 | 0.1 | 0.1 |
1 | 雷子欣, 李元平. 美国"马赛克战"作战概念解析[J]. 军事文摘, 2019, (2): 6- 10. |
LEI Z X , LI Y P . An analysis of the concept of American "Mosaic War"[J]. Military Digest, 2019, (2): 6- 10. | |
2 | MATTIS J. National defense strategy[EB/OL].[2020-03-03]. https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf. |
3 | 飞行总动员航天网.诺斯罗普·格鲁曼使用全球鹰无人机解决F-22与F-35战机通信代差问题[EB/OL].[2020-03-03]. https://www.sohu.com/a/169761629_476262, 2017-09-05. |
General aviation aerospace network. Northrop Grumman used the global hawk to solve the communication gap between f-22 and f-35 aircraft[EB/OL].[2020-03-03]. https://www.sohu.com/a/169761629_476262, 2017-09-05. | |
4 | 吴勤. 美军分布式作战概念发展分析[J]. 军事文摘, 2016, (7): 44- 47. |
WU Q . Development analysis of distributed combat concept of the US army[J]. Military Digest, 2016, (7): 44- 47. | |
5 | 叶秋玲,汪强.美军发布多域作战概念最新1.5版本[EB/OL].[2020-03-04]. http://www.fx361.com/page/2019/0312/4993189.shtml, 2019-03-12. |
YE Q L, WANG Q. U.S. release the latest version 1.5 of the multi-domain operational concepts[EB/OL].[2020-03-04]. http://www.fx361.com/page/2019/0312/4993189.shtml. | |
6 | WILLIAMS D B. DARPA's "mosaic warfare" concept turns complexity into asymmetric advantage[EB/OL].[2020-03-05]. http://tony.9shi.cf/index.php?q=aHR0cHM6Ly93d3cuZmlmdGhkb21haW4uY29tL2RvZC8yMDE3LzA4LzE0L2RhcnBhcy1tb3NhaWMtd2FyZmFyZS1jb25jZXB0LXR1cm5zLWNvbXBsZXhpdHktaW50by1hc3ltbWV0cmljLWFkdmFudGFnZS8. |
7 |
TERVONEN T , LIESIÖ J , SALO A . Modeling project preferences in multi-attribute portfolio decision analysis[J]. European Journal of Operational Research, 2017, 263 (1): 225- 239.
doi: 10.1016/j.ejor.2017.04.051 |
8 |
SEFAIR J A , MÉNDEZ C Y , BABAT O , et al. Linear solution schemes for mean-semi variance project portfolio selection problems: an application in the oil and gas industry[J]. Omega, 2017, 68, 39- 48.
doi: 10.1016/j.omega.2016.05.007 |
9 |
MOHAGHEGHI V , MOUSAVI S M , VAHDANI B , et al. R&D project evaluation and project portfolio selection by a new interval type -2 fuzzy optimization approach[J]. Neural Computing and Applications, 2017, 28 (12): 3869- 3888.
doi: 10.1007/s00521-016-2262-3 |
10 |
LIU Y , LIU Y K . Distributionally robust fuzzy project portfolio optimization problem with interactive returns[J]. Applied Soft Computing, 2017, 56, 655- 668.
doi: 10.1016/j.asoc.2016.09.022 |
11 |
SILVA C G , MEIDANIS J , MOURA A V , et al. An improved visualization-based approach for project portfolio selection[J]. Computers in Human Behavior, 2017, 73, 685- 696.
doi: 10.1016/j.chb.2016.12.083 |
12 |
SCHIFFELS S , FLIEDNER T , KOLISCH R . Human behavior in project portfolio selection: insights from an experimental study[J]. Decision Sciences, 2018, 49 (6): 1061- 1087.
doi: 10.1111/deci.12310 |
13 |
JAFARZADEH H , AKBARI P , ABEDIN B . A methodology for project portfolio selection under criteria prioritisation, uncertainty and projects interdependency-combination of fuzzy QFD and DEA[J]. Expert Systems with Applications, 2018, 110, 237- 249.
doi: 10.1016/j.eswa.2018.05.028 |
14 |
FIALA P . Project portfolio designing using data envelopment analysis and De Novo optimization[J]. Central European Journal of Operations Research, 2018, 26 (4): 847- 859.
doi: 10.1007/s10100-018-0571-6 |
15 | KOROTIN V , POPOV V , TOLOKONSKY A , et al. A multi-criteria approach to selecting an optimal portfolio of refinery upgrade projects under margin and tax regime uncertainty[J]. Omega, 2017, 72 (C): 50- 58. |
16 |
TINOCO M A C , DUTRA C C , RIBEIRO J L D , et al. An integrated model for evaluation and optimisation of business project portfolios[J]. European Journal of Industrial Engineering, 2018, 12 (3): 442- 463.
doi: 10.1504/EJIE.2018.092010 |
17 |
LI J C , GE B F , JIANG J , et al. High-end weapon equipment portfolio selection based on a heterogeneous network model[J]. Journal of Global Optimization, 2020, 78, 743- 761.
doi: 10.1007/s10898-018-0687-1 |
18 | XIONG J , ZHOU Z B , LIAO T J , et al. A multi-objective approach for weapon selection and planning problems in dynamic environments[J]. Journal of Industrial & Management Optimization, 2017, 13 (3): 1189- 1211. |
19 |
XIA B Y , ZHAO Q S , YANG K W , et al. Scenario-based modeling and solving research on robust weapon project planning problems[J]. Journal of Systems Engineering and Electronics, 2019, 30 (1): 85- 99.
doi: 10.21629/JSEE.2019.01.09 |
20 | VAHID M , MEYSAM M S , BEHAM V , et al. A mathematical modeling approach for high and new technology-project portfolio selection under uncertain environments[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32 (6): 4069- 4079. |
21 | 张骁雄, 葛冰峰, 姜江, 等. 面向能力需求的武器装备组合规划模型与算法[J]. 国防科技大学学报, 2017, 39 (1): 102- 108. |
ZHANG X X , GE B F , JIANG J , et al. Adapt to the need of the ability of weapon and equipment combination programming model and algorithm[J]. Journal of National University of Defense Technology, 2017, 39 (1): 102- 108. | |
22 | 豆亚杰, 徐向前, 周哲轩, 等. 系统组合选择方法及典型军事应用[J]. 系统工程与电子技术, 2019, 41 (12): 2754- 2762. |
DOU Y J , XU X Q , ZHOU Z X , et al. Analysis of system portfolio selection and typical military application[J]. Systems Engineering and Electronics, 2019, 41 (12): 2754- 2762. | |
23 | 杨克巍, 杨志伟, 谭跃进, 等. 面向体系贡献率的装备体系评估方法研究综述[J]. 系统工程与电子技术, 2019, 41 (2): 311- 321. |
YANG K W , YANG Z W , TAN Y J , et al. Review of the evaluation methods of equipment system of systems facing the contribution rate[J]. Systems Engineering and Electronics, 2019, 41 (2): 311- 321. | |
24 | 夏博远, 赵青松, 张骁雄, 等. 基于动态能力需求的鲁棒性武器系统组合决策[J]. 系统工程与电子技术, 2017, 39 (6): 1280- 1286. |
XIA B Y , ZHAO Q S , ZHANG X X , et al. Robust weapon system portfolio decision based on dynamic capability requirements[J]. Systems Engineering and Electronics, 2017, 39 (6): 1280- 1286. | |
25 | 刘鹏, 赵丹玲, 谭跃进, 等. 面向多任务的武器装备体系贡献度评估方法[J]. 系统工程与电子技术, 2019, 41 (8): 1763- 1770. |
LIU P , ZHAO D L , TAN Y J , et al. Multi-task oriented contribution evaluation method of weapon equipment system of systems[J]. Systems Engineering and Electronics, 2019, 41 (8): 1763- 1770. | |
26 | 李际超, 吴俊, 谭跃进, 等. 基于有向自然连通度的作战网络抗毁性研究[J]. 复杂系统与复杂性科学, 2015, 12 (4): 25- 31. |
LI J C , WU J , TAN Y J , et al. Robustness of combat networks based on directed natural connectivity[J]. Complex Systems and Complexity Science, 2015, 12 (4): 25- 31. | |
27 | LI J C , ZHAO D L , JAING J , et al. Capability oriented equipment contribution analysis in temporal combat networks[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems,, 2015, 12 (4): 25- 31. |
28 | LI J C , JIANG J , YANG K , et al. Research on functional robustness of heterogeneous combat networks[J]. IEEE Systems Journal, 2018, 13 (2): 1487- 1495. |
29 | ARYO D. Dijkstra algorithm[EB/OL].[2020-02-12]. https://www.mathworks.com/matlabcentral/fileexchange/36140-dijkstra-algorithm. |
30 |
DEB K , PRATAP A , AGARWAL S , et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Trans.on Evolutionary Computation, 2002, 6 (2): 182- 197.
doi: 10.1109/4235.996017 |
31 | SHIH H S , SHYUR H J , LEE E S . An extension of TOPSIS for group decision making[J]. Mathematical & Computer Modelling, 2007, 45 (7): 801- 813. |
[1] | 闫世瑛, 颜克斐, 方伟, 陆恒杨. 基于差分进化邻域自适应的大规模多目标算法[J]. 系统工程与电子技术, 2022, 44(7): 2112-2124. |
[2] | 刘乾, 鲁云军, 陈克斌, 韩梦瑶, 郭亮. 任务主体二元约束下作战任务分解EVA方法[J]. 系统工程与电子技术, 2022, 44(7): 2201-2210. |
[3] | 来磊, 邹鲲, 吴德伟, 李保中. 交互策略改进MOFA进化的多UAV协同航迹规划[J]. 系统工程与电子技术, 2021, 43(8): 2282-2289. |
[4] | 崔荣伟, 韩维, 苏析超, 王立国, 刘玉杰. 舰载机甲板机务勤务保障作业调度与资源配置集成优化[J]. 系统工程与电子技术, 2021, 43(7): 1884-1893. |
[5] | 周晶, 赵晓哲, 许震, 林众, 张晓盼. 基于D-NSGA-Ⅲ算法的无人机群高维多目标任务分配方法[J]. 系统工程与电子技术, 2021, 43(5): 1240-1247. |
[6] | 田春明, 杨安, 叶乐, 李建星, 贺雨晨. 基于贝叶斯算法的天线端到端优化[J]. 系统工程与电子技术, 2021, 43(12): 3413-3419. |
[7] | 来磊, 吴德伟, 邹鲲, 韩昆, 李海林. 基于多准则交互膜进化算法的UAV三维航迹规划[J]. 系统工程与电子技术, 2021, 43(1): 138-146. |
[8] | 王亚东, 石全, 夏伟, 陈材. 基于超启发式算法的备件供应网络结构优化[J]. 系统工程与电子技术, 2020, 42(3): 620-629. |
[9] | 丁春山. 传感器管理技术研究现状与展望[J]. 系统工程与电子技术, 2020, 42(12): 2761-2770. |
[10] | 马武彬, 王锐, 王威超, 吴亚辉, 邓苏, 黄宏斌. 基于进化多目标优化的微服务组合部署与调度策略[J]. 系统工程与电子技术, 2020, 42(1): 90-100. |
[11] | 李瑞阳, 王智学, 禹明刚, 何红悦. 基于鲁棒能力的体系多目标组合优化[J]. 系统工程与电子技术, 2019, 41(5): 1034-1042. |
[12] | 孙鹏, 武君胜, 王勋, 焦志强, 张杰勇. 基于多目标优化的C2组织平台资源动态调度方法[J]. 系统工程与电子技术, 2019, 41(4): 793-800. |
[13] | 褚骁庚, 马政伟, 陈行军. 面向多目标优化火力目标分配问题的前瞻式边际贪婪算法[J]. 系统工程与电子技术, 2019, 41(10): 2252-2259. |
[14] | 徐浩, 邢清华, 王伟. 基于模糊多目标规划的防空反导火力分配[J]. 系统工程与电子技术, 2018, 40(3): 563-570. |
[15] | 李志亮, 李小将, 张东来. 基于改进DE算法的敏捷成像卫星前摄式调度[J]. 系统工程与电子技术, 2018, 40(2): 353-359. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||