系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (2): 390-398.doi: 10.12305/j.issn.1001-506X.2021.02.14
潘星1(), 张振宇1,2(), 张艳梅3(), 王冉冉3()
收稿日期:
2020-03-31
出版日期:
2021-02-01
发布日期:
2021-03-16
作者简介:
潘星(1979-),男,教授,博士研究生导师,博士,主要研究方向为系统工程与体系工程、系统可靠性与风险分析、人因可靠性分析。E-mail:基金资助:
Xing PAN1(), Zhenyu ZHANG1,2(), Yanmei ZHANG3(), Ranran WANG3()
Received:
2020-03-31
Online:
2021-02-01
Published:
2021-03-16
摘要:
现代化作战都趋向于体系与体系间的对抗,装备体系保障能力已经成为影响装备体系作战能力的关键。为了定量衡量装备体系保障的效果,需要对装备体系保障效能进行科学的量化评估。首先进行装备体系保障能力分析,得出装备体系保障能力指标。其次,基于Sobol敏感性分析方法,对装备体系可用度进行敏感性分析,得到装备体系保障能力指标的重要程度。然后,基于Sobol敏感性分析,综合采用幂指数法提出装备体系保障效能评估方法。最后,通过多智能体仿真方法对某装备体系保障效能进行仿真评估,验证了所提方法有效性。
中图分类号:
潘星, 张振宇, 张艳梅, 王冉冉. 基于Sobol敏感性分析的装备体系保障效能评估[J]. 系统工程与电子技术, 2021, 43(2): 390-398.
Xing PAN, Zhenyu ZHANG, Yanmei ZHANG, Ranran WANG. Equipment SoS support effectiveness evaluation based on Sobol sensitivity analysis[J]. Systems Engineering and Electronics, 2021, 43(2): 390-398.
表2
装备后送修复效能(E1.2)"
装备 | 权重(用Sobol敏感性分析法确定权重) | ||||||||
X4/km | X5/(km/h) | X6/min | X7/% | X8/% | X9/km | X10/(km/h) | X11/% | X12/% | |
LJ1 | 600~800 | 65~70 | 100~240 | 92~95 | 90~93 | 750~800 | 65~70 | 90~93 | 95~98 |
LJ2 | 700~800 | 60~75 | 120~240 | 83~90 | 91~95 | 700~800 | 60~75 | 80~86 | 90~95 |
LJ3 | 650~800 | 60~70 | 130~240 | 90~93 | 95~98 | 750~800 | 60~70 | 93~97 | 90~96 |
YJ1 | 600~850 | 65~80 | 120~200 | 85~88 | 90~95 | 600~700 | 65~80 | 80~85 | 95~98 |
YJ2 | 600~800 | 60~80 | 120~200 | 83~88 | 90~94 | 700~750 | 60~80 | 95~98 | 90~94 |
YJ3 | 620~810 | 60~70 | 100~240 | 92~96 | 95~98 | 700~800 | 60~70 | 90~96 | 93~97 |
YJ4 | 630~800 | 60~75 | 150~240 | 96~99 | 91~95 | 700~850 | 60~75 | 95~98 | 93~96 |
ZK1 | 630~800 | 60~75 | 150~240 | 92~95 | 87~91 | 650~800 | 60~70 | 90~95 | 80~97 |
ZK2 | 600~800 | 60~80 | 120~240 | 90~95 | 86~90 | 750~850 | 60~80 | 90~96 | 90~95 |
ZK3 | 700~800 | 60~70 | 150~250 | 91~96 | 92~98 | 700~800 | 60~70 | 95~99 | 90~94 |
表3
资源补给效能(E2)"
装备 | 权重(用Sobol敏感性分析法确定权重) | ||||||||
X13/min | X14/km | X15/(km/h) | X16/min | X17/km | X18/(km/h) | X19/% | X20/% | ||
LJ1 | 5~10 | 600~800 | 60~80 | 8~12 | 700~800 | 60~80 | 91~95 | 95~98 | |
LJ2 | 6~10 | 800~1 000 | 60~80 | 10~12 | 600~800 | 60~80 | 93~96 | 90~96 | |
LJ3 | 4~10 | 800~1 000 | 60~80 | 8~12 | 700~900 | 60~80 | 92~96 | 96~99 | |
YJ1 | 5~10 | 900~1 000 | 60~80 | 6~12 | 700~800 | 60~80 | 90~94 | 97~99 | |
YJ2 | 8~10 | 800~900 | 60~80 | 10~12 | 600~700 | 60~80 | 90~97 | 93~97 | |
YJ3 | 6~10 | 800~1 000 | 60~80 | 10~15 | 500~600 | 60~80 | 94~96 | 91~97 | |
YJ4 | 5~10 | 800~950 | 60~80 | 8~12 | 700~800 | 60~80 | 91~95 | 89~96 | |
ZK1 | 8~10 | 800~900 | 60~80 | 8~16 | 600~800 | 60~80 | 92~96 | 90~95 | |
ZK2 | 4~10 | 700~800 | 60~80 | 10~20 | 700~800 | 60~80 | 91~96 | 92~97 | |
ZK3 | 4~10 | 800~900 | 60~80 | 10~15 | 600~800 | 60~80 | 90~95 | 86~93 |
表4
指挥调度效能(E3)"
装备 | 权重(用Sobol敏感性分析法确定权重) | |||||
X21/s | X22/s | X23/min | X24/s | X25/s | X26/min | |
LJ1 | 10~30 | 100~200 | 5~8 | 10~18 | 100~140 | 10~14 |
LJ2 | 5~20 | 50~200 | 5~8 | 4~14 | 80~180 | 6~8 |
LJ3 | 10~18 | 80~160 | 6~8 | 5~17 | 50~150 | 7~12 |
YJ1 | 6~12 | 60~120 | 5~10 | 6~14 | 80~180 | 5~13 |
YJ2 | 10~20 | 100~180 | 5~9 | 6~15 | 80~160 | 5~8 |
YJ3 | 8~20 | 100~300 | 6~12 | 7~18 | 40~120 | 5~8 |
YJ4 | 5~15 | 60~200 | 10~14 | 10~18 | 60~120 | 6~8 |
ZK1 | 10~20 | 100~180 | 6~8 | 6~12 | 100~180 | 5~10 |
ZK2 | 6~20 | 80~180 | 7~12 | 10~20 | 100~300 | 5~9 |
ZK3 | 8~16 | 50~150 | 5~13 | 8~20 | 60~120 | 6~12 |
1 | LUBAS D G.Department of defense system of systems reliability challenges[C]//Proc.of the Annual Reliability and Maintainability Symposium, 2017. |
2 |
王琴琴, 宋太亮, 汤伟达, 等. 基于效用函数的装备保障效能评估方法[J]. 火力与指挥控制, 2014, 39 (11): 76- 79.
doi: 10.3969/j.issn.1002-0640.2014.11.019 |
WANG Q Q , SONG T L , TANG W D , et al. Evaluation of equipment support efficiency based on theory of utility function[J]. Fire Control & Command Control, 2014, 39 (11): 76- 79.
doi: 10.3969/j.issn.1002-0640.2014.11.019 |
|
3 |
TILLMAN F A , HWANG C L , KUO W . System effectiveness models:an annotated bibliography[J]. IEEE Trans.on Reliability, 1980, 29 (4): 295- 304.
doi: 10.1109/TR.1980.5220844 |
4 |
祝华远, 马乃苍, 崔亚君. 基于ADC的军用飞机保障效能模型[J]. 兵工自动化, 2014, 33 (11): 17- 19.
doi: 10.7690/bgzdh.2014.11.006 |
ZHU H Y , MA N C , CUI Y J . Research on support effectiveness model of battle plane based on ADC[J]. Ordnance Industry Automation, 2014, 33 (11): 17- 19.
doi: 10.7690/bgzdh.2014.11.006 |
|
5 | 张洋铭, 陈云翔, 项华春, 等. 航空四站保障效能组合评估方法[J]. 系统工程理论与电子技术, 2017, 39 (2): 340- 347. |
ZHANG Y M , CHEN Y X , XIANG H C , et al. Combined evaluation method of aviation four-station support efficiency[J]. System Engineering and Electronic, 2017, 39 (2): 340- 347. | |
6 |
许贵君, 王晖, 赵凯. 基于仿真的装备保障指挥效能评估方法研究[J]. 计算机仿真, 2017, 34 (11): 1- 6.
doi: 10.3969/j.issn.1006-9348.2017.11.001 |
XU G J , WANG H , ZHAO K . Effectiveness evaluation method based on simulation for equipment support command[J]. Computer Simulation, 2017, 34 (11): 1- 6.
doi: 10.3969/j.issn.1006-9348.2017.11.001 |
|
7 |
熊彪, 王帅, 李必鑫, 等. 基于ARENA的航空兵场站油料保障效能仿真评估[J]. 兵器装备工程学报, 2018, 39 (4): 92- 96.
doi: 10.11809/bqzbgcxb2018.04.020 |
XIONG B , WANG S , LI B X , et al. Simulation for POL support effectiveness evaluation of air base based on arena[J]. Journal of Ordnance Equipment Engineering, 2018, 39 (4): 92- 96.
doi: 10.11809/bqzbgcxb2018.04.020 |
|
8 | 李羚玮, 王兵, 曹军海, 等. 基于仿真的装备动用与保障效能评估[J]. 系统仿真学报, 2019, 31 (9): 1747- 1754. |
LI L W , WANG B , CAO J H , et al. Equipment assignment and supporting efficiency evaluation based on simulation[J]. Journal of System Simulation, 2019, 31 (9): 1747- 1754. | |
9 | 尹丽丽, 寇力, 范文慧. 基于多Agent的装备保障体系分布式建模与仿真方法[J]. 系统仿真学报, 2017, 29 (12): 3185- 3194. |
YIN L L , KOU L , FAN W H . Distributed modeling and simulation method of equipment support system based on multi-agent[J]. Journal of System Simulation, 2017, 29 (12): 3185- 3194. | |
10 |
高龙, 曹军海, 宋太亮, 等. 分布式装备保障体系任务分配模型[J]. 装甲兵工程学院学报, 2018, 32 (6): 13- 21.
doi: 10.3969/j.issn.1672-1497.2018.06.003 |
GAO L , CAO J G , SONG T L , et al. Distributed task assignment model for equipment support system[J]. Journal of Academy of Armored Force Engineering, 2018, 32 (6): 13- 21.
doi: 10.3969/j.issn.1672-1497.2018.06.003 |
|
11 |
GOROD A , SAUSER B , BOARDMAN J . System-of-systems engineering management:a review of modern history and a path forward[J]. IEEE Systems Journal, 2008, 2 (4): 484- 499.
doi: 10.1109/JSYST.2008.2007163 |
12 |
KUMAR P , MERZOUKI R , BOUAMAMA B O . Multilevel modeling of system of systems[J]. IEEE Trans.on Systems, Man, and Cybernetics:Systems, 2018, 48 (8): 1309- 1320.
doi: 10.1109/TSMC.2017.2668065 |
13 |
CHENG Z L , FAN L , ZHANG Y L . A framework for equipment systems-of-systems effectiveness evaluation using parallel experiments approach[J]. Journal of Systems Engineering and Electronics, 2015, 26 (2): 292- 300.
doi: 10.1109/JSEE.2015.00035 |
14 | MATTHEWS D, COLLIER P.Assessing the value of a C4ISREW system-of-systems capability[C]//Proc.of the 5th International Command and Control Research and Technology Symposium, 2000. |
15 | 潘星, 张振宇, 张曼丽, 等. 基于SoSE的装备体系RMS论证方法研究[J]. 系统工程与电子技术, 2019, 41 (8): 1771- 1779. |
PAN X , ZHANG Z Y , ZHANG M L , et al. Research on RMS demonstration method of equipment SoS based on SoSE[J]. Systems Engineering and Electronics, 2019, 41 (8): 1771- 1779. | |
16 |
KEATING C B , PADILLA J J , ADAMS K . System of systems engineering requirements:challenges and guidelines[J]. Engineering Management Journal, 2008, 20 (4): 24- 31.
doi: 10.1080/10429247.2008.11431785 |
17 | KRISTEN J B.Systems engineering guide for systems of systems[R].Washington DC: Office of the Deputy Under Secretary of Defense for Acquisition and Technology, Systems and Software Engineering, 2008: 33-34. |
18 | SALTELLI A , RATTO M , TARANTOLA S , et al. Sensitivity analysis practices:strategies for model-based inference[J]. Reliability Engineering & System Safety, 2006, 91 (10/11): 1109- 1125. |
19 | BORGONOVO E . Sensitivity analysis:an introduction for the management scientist[M]. Cham: Springer International Publishing, 2017: 93- 100. |
20 |
OLADYSHKIN S , BARROS F P J D , NOWAK W . Global sensitivity analysis:a flexible and efficient framework with an example from stochastic hydrogeology[J]. Advances in Water Resources, 2012, 37, 10- 22.
doi: 10.1016/j.advwatres.2011.11.001 |
21 | CHANG X , XU Z X , ZHAO G , et al. Sensitivity analysis on SWMM model parameters based on Sobol method[J]. Journal of Hydroelectric Engineering, 2018, 37 (3): 59- 68. |
22 |
SHRIPRAKASH S . Hilbert-Schmidt and Sobol sensitivity indices for static and time series Wnt signaling measurements in colorectal cancer-part A[J]. BMC Systems Biology, 2017, 11 (1): 120- 130.
doi: 10.1186/s12918-017-0488-z |
23 |
ZHANG X Y , TRAME M , LESKO L , et al. Sobol sensitivity analysis:a tool to guide the development and evaluation of systems pharmacology models[J]. CPT:Pharmacometrics Systems Pharmacology, 2015, 4 (2): 69- 79.
doi: 10.1002/psp4.6 |
24 |
ALHOSSEN I , VILLENEUVEFAURE C , BAUDOIN F , et al. Sensitivity analysis of the electrostatic force distance curve using Sobol's method and design of experiments[J]. Journal of Physics D Applied Physics, 2018, 50 (3): 035304.
doi: 10.1088/1361-6463/50/3/035304 |
25 | LU Y, CHANG L, YANG K, et al.Study on system of systems capability modeling framework based on complex relationship analyzing[C]//Proc.of the IEEE International Systems Conference, 2010: 23-28. |
26 | SILVA E, BATISTA T, OQUENDO F.A mission-oriented approach for designing system-of-systems[C]//Proc.of the 10th International Conference on System of Systems Engineering, 2015: 346-351. |
27 | 郭齐胜. 装备效能评估概论[M]. 北京: 国防工业出版社, 2005. |
GUO Q S . Introduction to equipment efficiency evaluation[M]. Beijing: National Defense Industry Press, 2015. | |
28 | GRIENDLING K, MAVRIS D N.Development of a DoDAF-based executable architecting approach to analyze system-of-systems alternatives[C]//Proc.of the IEEE Aerospace Conference, 2011. |
29 |
GE B , HIPEL K W , YANG K , et al. A novel executable modeling approach for system-of-systems architecture[J]. IEEE Systems Journal, 2014, 8 (1): 4- 13.
doi: 10.1109/JSYST.2013.2270573 |
30 | CONNORSC D , MILLERJ O , LUNDAYB J . Using agent-based modeling and a designed experiment to simulate and analyze a new air-to-air missile[J]. The Journal of Defense Modeling and Simulation:Applications, Methodology, Technology, 2015, 13 (3): 321- 330. |
[1] | 浣顺启, 方哲梅, 王剑波. 基于功能依赖网的体系效能评估方法[J]. 系统工程与电子技术, 2022, 44(7): 2191-2200. |
[2] | 蔺向阳, 邢清华, 刘付显. 针对要点防空模型的作战兵力优化研究[J]. 系统工程与电子技术, 2022, 44(3): 921-928. |
[3] | 邱禄芸, 方志耕, 陶良彦, 陶秋澄. 网络体系效能评估改进FDNA模型[J]. 系统工程与电子技术, 2022, 44(12): 3728-3737. |
[4] | 高昂, 郭齐胜, 董志明, 杨绍卿. 基于EAS+MADRL的多无人车体系效能评估方法研究[J]. 系统工程与电子技术, 2021, 43(12): 3643-3651. |
[5] | 杨圩生, 王钰, 杨洋, 唐亮. 基于作战环的不同节点攻击策略下的作战网络效能评估[J]. 系统工程与电子技术, 2021, 43(11): 3220-3228. |
[6] | 韩驰, 熊伟. 基于改进灰狼算法优化SVR的航天侦察装备效能评估[J]. 系统工程与电子技术, 2021, 43(10): 2902-2910. |
[7] | 李彪, 王立文, 邢志伟, 罗谦. 过站航班地面保障流程效能评估[J]. 系统工程与电子技术, 2020, 42(7): 1543-1549. |
[8] | 汪民乐. 导弹力量作战行动规划综述[J]. 系统工程与电子技术, 2020, 42(12): 2825-2832. |
[9] | 方志耕, 邵瑞瑞, 王召, 刘思峰, 游伟青, 高素. 高轨卫星通信星座PS-GERT效能评估模型[J]. 系统工程与电子技术, 2020, 42(10): 2356-2365. |
[10] | 王双川, 贾希胜, 胡起伟, 王强. 基于正态灰云模型的装备维修保障系统效能评估[J]. 系统工程与电子技术, 2019, 41(7): 1576-1582. |
[11] | 张壮, 李琳琳, 魏振华, 余宏峰. 基于变权投影灰靶的指控系统动态效能评估[J]. 系统工程与电子技术, 2019, 41(4): 801-809. |
[12] | 王双川, 胡起伟, 李锋, 王强, 冉悄然, 马云飞. 装备维修保障效能评估研究综述[J]. 系统工程与电子技术, 2019, 41(10): 2271-2278. |
[13] | 罗承昆, 陈云翔, 王莉莉, 王泽洲, 常政. 基于作战环和改进信息熵的体系效能评估方法[J]. 系统工程与电子技术, 2019, 41(1): 73-80. |
[14] | 秦茂森, 赵丹玲, 杨克巍. 基于作战网络的反潜活动效能评估[J]. 系统工程与电子技术, 2018, 40(7): 1513-1520. |
[15] | 李琳琳, 路云飞, 张壮, 和何. 基于云模型的指挥控制系统效能评估[J]. 系统工程与电子技术, 2018, 40(4): 815-822. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||