系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (2): 376-382.doi: 10.12305/j.issn.1001-506X.2021.02.12

• 传感器与信号处理 • 上一篇    下一篇

基于长短时记忆网络的雷达波形设计

赵俊龙1(), 李伟1(), 王泓霖2(), 黄腾3(), 甘奕夫1(), 王也4()   

  1. 1. 空军工程大学信息与导航学院, 陕西 西安710077
    2. 中国人民解放军95851部队, 上海 201900
    3. 广州大学计算机科学与网络工程学院, 广东 广州 510006
    4 中国人民解放军95939部队, 河北 沧州 061722 Unit 95939 of the PLA, Cangzhou 061722, China
  • 收稿日期:2020-04-28 出版日期:2021-02-01 发布日期:2021-03-16
  • 作者简介:赵俊龙(1995-),男,硕士研究生,主要研究方向为深度学习、雷达波形设计。E-mail:jlzhao0826@163.com|李伟(1978-),男,副教授,硕士研究生导师,博士,主要研究方向为新体制雷达、雷达波形设计。E-mail:liweichangsha@163.com|王泓霖(1995-),男,工程师,硕士,主要研究方向为博弈论、雷达波形设计。E-mail:wanghonglin821@outlook.com|黄腾(1985-),男,讲师,博士,主要研究方向为人工智能、雷达信号处理。E-mail:huangteng1220@buaa.edu.cn|甘奕夫(1998-),男,硕士研究生,主要研究方向为深度学习、雷达波形设计。E-mail:1922247521@qq.com|王也(1994-),男,工程师,硕士,主要研究方向为机器学习、短波通信。E-mail:694540459@qq.com
  • 基金资助:
    国家自然科学基金(61571456);航空科学基金(20160196001);陕西省自然科学基金(2020JM-347)

Waveform design of radar based on long short-term memory network

Junlong ZHAO1(), Wei LI1(), Honglin WANG2(), Teng HUANG3(), Yifu GAN1(), Ye WANG4()   

  1. 1. Information and Navigation College, Air Force Engineering University, Xi’an 710077, China
    2. Unit 95851 of the PLA,Shanghai 201900, China
    3. School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
  • Received:2020-04-28 Online:2021-02-01 Published:2021-03-16

摘要:

针对单准则设计的波形难以满足雷达多工作模式和多任务问题,联合互信息(mutual information, MI)准则和信杂噪比(signal to clutter and noise ratio, SCNR)准则,提出一种基于长短时记忆(long short-term memory, LSTM)网络的雷达波形设计方法。首先,设计了由输入层、LSTM层和输出层构成的LSTM网络。其次,将基于MI准则和SCNR准则生成的信号与相应环境信息组成训练集,训练LSTM网络。最后,使用训练完成的LSTM网络设计波形,并将所提方法生成波形的雷达性能与单准则设计的波形进行对比。为衡量雷达综合性能,提出一种新的雷达综合性能指标和目标识别率。仿真结果表明,所提方法生成信号作为发射信号时,与MI准则生成信号相比,雷达综合性能平均提升0.67%,与SCNR准则相比,平均提升1.47%,证明了该方法可兼具MI准则和SCNR准则优点,提升雷达综合性能。

关键词: 波形设计, 互信息准则, 信杂噪比准则, 长短时记忆网络

Abstract:

Considering the problem that the waveform designed using single-criterion is difficult to meet the radar's multi-working mode and multi-tasking, a waveform design method based on long short-term memory (LSTM) network is proposed, through combining mutual information (MI) criterion and signal to clutter and noise ratio (SCNR) criterion. Firstly, a LSTM network composed of input layer, LSTM layer, and output layer is designed. Secondly, a train set composed of signals generated through MI criteria and SCNR criteria and the corresponding environmental information is constructed, which is used to train the LSTM network. Finally, the trained LSTM network is used to design waveform, and the radar performance of the waveform generated by the proposed method is compared with the single-criterion design waveform. In order to measure the comprehensive performance of radar, a novel comprehensive performance indicator and target recognition rate of radar are proposed. Simulation results show that when the signal generated by the proposed method is used as the transmit signal, the comprehensive performance of radar is increased by 0.67% on average compared with MI criterion and 1.47% compared with SCNR criterion. It is proved that the proposed method can combine the advantages of the MI criterion and SCNR criterion, and improve the comprehensive performance of radar.

Key words: waveform design, mutual information (MI) criterion, signal to clutter and noise ratio (SCNR) criterion, long short-term memory network (LSTM)

中图分类号: