1 |
GAO F , HUANG T , WANG J , et al. A novel multi-input bidirectional LSTM and HMM based approach for target recognition from multi-domain radar range profiles[J]. Electronics, 2019, 8 (5): 535- 553.
doi: 10.3390/electronics8050535
|
2 |
HAYKIN S . Cognitive radar:a way of the future[J]. IEEE Signal Processing Magazine, 2006, 23 (1): 30- 40.
doi: 10.1109/MSP.2006.1593335
|
3 |
WANG L, ZHANG Y L, LIAO Q M, et al.Robust waveform design for multi-target detection in cognitive MIMO radar[C]//Proc.of the IEEE Radar Conference, 2018: 116-120.
|
4 |
崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8 (5): 537- 557.
|
|
CUI G L , YU X X , YANG J , et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8 (5): 537- 557.
|
5 |
XU M, DU N, LI Z Y, et al.Cognitive SAR waveform design method based on joint optimization criteria[C]//Proc.of the 6th Asia-Pacific Conference on Synthetic Aperture Radar, 2019.
|
6 |
BELL M R . Information theory and radar waveform design[J]. IEEE Trans.on Information Theory, 1993, 39 (5): 1578- 1597.
doi: 10.1109/18.259642
|
7 |
GUO D , SHAMAI S , VERDU S . Mutual information and minimum mean-square error in Gaussian channels[J]. IEEE Trans.on Information Theory, 2005, 51 (4): 1261- 1282.
doi: 10.1109/TIT.2005.844072
|
8 |
YANG Y , BLUM R S . MIMO radar waveform design based on mutual information and minimum mean-square error estimation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2007, 43 (1): 330- 343.
doi: 10.1109/TAES.2007.357137
|
9 |
GRIEVE P G, GUERCI J R.Optimum matched illumination-reception radar: US5175552[P].1992-12-29.
|
10 |
PILLAI S U , YOULA D C , OH H S , et al. Optimum transmit-receiver design in the presence of signal-dependent interference and channel noise[J]. IEEE Trans.on Information Theory, 2002, 46 (5): 577- 584.
|
11 |
ROMERO R A , BAE J , GOODMAN N A . Theory and application of SNR and mutual information matched illumination waveforms[J]. IEEE Trans.on Aerospace and Electronic Systems, 2011, 47 (2): 912- 927.
doi: 10.1109/TAES.2011.5751234
|
12 |
HAYKIN S, XUE Y, DAVIDSON T N.Optimal waveform design for cognitive radar[C]//Proc.of the 42nd Asilomar Conference on Signals, Systems and Computers, 2008.
|
13 |
ZHANG J D, ZHU D Y, ZHANG G.Multi-objective waveform design for cognitive radar[C]//Proc.of the IEEE CIE International Conference on Radar, 2011: 580-583.
|
14 |
ZHAO W , JIAO L C , MA W P , et al. Superpixel-based multiple local CNN for panchromatic and multispectral image classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2017, 55 (7): 4141- 4156.
doi: 10.1109/TGRS.2017.2689018
|
15 |
NISHIMURA Y , SUDOH K , NEUBIG G , et al. Multi-source neural machine translation with missing data[J]. IEEE/ACM Trans.on Audio, Speech, and Language Processing, 2020, 28, 569- 580.
doi: 10.1109/TASLP.2019.2959224
|
16 |
LECUN Y , BENGIO Y , HINTON G E , et al. Deep learning[J]. Nature, 2015, 521 (7553): 436- 444.
doi: 10.1038/nature14539
|
17 |
YE H , LI G Y , JUANG B H F . Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2017, 7 (1): 114- 117.
|
18 |
O'SHEA T J , HPYDIS J . An introduction to deep learning for the physical layer[J]. IEEE Trans.on Cognitive Communcations & Networking, 2017, 3 (4): 563- 575.
|
19 |
HUIZING A , HEILIGERS M , DEKKER B , et al. Deep learning for classification of mini-UAVs using micro-Doppler spectrograms in cognitive radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34 (11): 46- 56.
doi: 10.1109/MAES.2019.2933972
|
20 |
李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40 (9): 1953- 1959.
|
|
LI J W , QU C W , PENG S J , et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40 (9): 1953- 1959.
|
21 |
WANG H P, CHEN S Z, XU F, et al.Application of deep-learning algorithms to MSTAR data[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2015: 3743-3745.
|
22 |
WU S N, WANG K, OUYANG Y W.Research on ground object classification detection method of heterologous SAR image based on transfer learning[C]//Proc.of the IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, 2019: 1496-1499.
|
23 |
DAI S Z , LI L , LI Z H . Modeling vehicle interactions via modi-fied LSTM models for trajectory prediction[J]. IEEE Access, 2019, 7, 38287- 38296.
doi: 10.1109/ACCESS.2019.2907000
|
24 |
XIE Y , LIANG R Y , LIANG Z L , et al. Speech emotion classi-fication using attention-based LSTM[J]. IEEE/ACM Trans.on Audio, Speech, and Language Processing, 2019, 27 (11): 1675- 1685.
doi: 10.1109/TASLP.2019.2925934
|
25 |
SHIN Y , LEE S G . Learning context using segment-level LSTM for neural sequence labeling[J]. IEEE/ACM Trans.on Audio, Speech, and Language Processing, 2020, 28, 105- 115.
doi: 10.1109/TASLP.2019.2948773
|
26 |
黎湘, 范梅梅. 认知雷达及其关键技术研究进展[J]. 电子学报, 2012, 40 (9): 1863- 1870.
doi: 10.3969/j.issn.0372-2112.2012.09.025
|
|
LI X , FAN M M . Research advance on cognitive radar and its key technology[J]. Acta Electronica Sinica, 2012, 40 (9): 1863- 1870.
doi: 10.3969/j.issn.0372-2112.2012.09.025
|
27 |
赵树杰, 赵建勋. 信号检测与估计理论[M]. 北京: 清华大学出版社, 2005.
|
|
ZHAO S J , ZHAO J X . Theory of signal detection and estimation[M]. Beijing: Tsinghua University Press, 2005.
|
28 |
李伟, 王泓霖, 郑家毅, 等. 博弈条件下雷达波形设计策略研究[J]. 电子与信息学报, 2019, 41 (11): 2654- 2660.
doi: 10.11999/JEIT190114
|
|
LI W , WANG H L , ZHENG J Y , et al. Research on radar waveform design strategy under game condition[J]. Journal of Electronics and Information Technology, 2019, 41 (11): 2654- 2660.
doi: 10.11999/JEIT190114
|
29 |
GRAVES A . Supervised sequence labelling with recurrent neural networks[M]. Berlin: Springer Press, 2012.
|
30 |
HAN J H , LIU H , WANG M Y , et al. ERA-LSTM:an efficient ReRAM-based architecture for long short-term memory[J]. IEEE Trans.on Parallel and Distributed Systems, 2020, 31 (6): 1328- 1342.
doi: 10.1109/TPDS.2019.2962806
|
31 |
HABIBUR R . Fundamental principles of radar[M]. Florida: CRC Press, 2019.
|