系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (2): 351-362.doi: 10.12305/j.issn.1001-506X.2021.02.09

• 传感器与信号处理 • 上一篇    下一篇

双层稀疏组Lasso高分辨SAR结构特征增强成像

杨磊1,*(), 李慧娟1(), 黄博2(), 刘伟1(), 李埔丞1()   

  1. 1. 中国民航大学天津市智能信号与图像处理重点实验室, 天津 300300
    2. 中国工程物理研究院电子工程研究所, 四川 绵阳 621999
  • 收稿日期:2020-04-20 出版日期:2021-02-01 发布日期:2021-03-16
  • 通讯作者: 杨磊 E-mail:yanglei840626@163.com;mearing@foxmail.com;vick123y@163.com;1763026755@qq.com;pucklee1111@163.com
  • 作者简介:李慧娟(1996-),女,硕士研究生,主要研究方向为高分辨SAR成像及优化学习理论。E-mail:mearing@foxmail.com|黄博(1986-),男,助理研究员,博士研究生,主要研究方向为雷达高度表、雷达信号处理。E-mail:vick123y@163.com|刘伟(1993-),男,硕士研究生,主要研究方向为高分辨SAR成像及优化学习理论。E-mail:1763026755@qq.com|李埔丞(1992-),男,硕士研究生,主要研究方向为高分辨SAR成像及优化学习理论。E-mail:pucklee1111@163.com
  • 基金资助:
    国家自然科学基金(61601470);天津市自然科学基金(16JCYBJC41200);装备预研基金(61406190101)

High resolution SAR imagery with structural feature enhancement under two-layer sparse group Lasso

Lei YANG1,*(), Huijuan LI1(), Bo HUANG2(), Wei LIU1(), Pucheng LI1()   

  1. 1. Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300, China
    2. Institute of Electronic Engineering, Chinese Academy of Engineering Physics, Mianyang 621999, China
  • Received:2020-04-20 Online:2021-02-01 Published:2021-03-16
  • Contact: Lei YANG E-mail:yanglei840626@163.com;mearing@foxmail.com;vick123y@163.com;1763026755@qq.com;pucklee1111@163.com

摘要:

针对合成孔径雷达(synthetic aperture radar, SAR)成像中,基于?1正则化线性回归(简称为Lasso)的凸优化类算法在进行稀疏特征增强时会导致弱散射体结构特征丢失,进而影响稀疏信号恢复精度的问题,本文提出一种基于双层稀疏组Lasso罚高斯回归模型的交替方向多乘子算法。该算法以散射体的块结构(组)特征为先验,首先针对SAR数据分类特征引入?1范数对应的近端算子,通过在交替方向多乘子方法框架中利用高斯-赛德尔思想对其近端算子进行对偶迭代运算,实现第一层和第二层SAR组间的稀疏特征增强。另外混合范数中的?F范数为高斯惩罚项,可对SAR回波复数据整体进行平滑,实现SAR结构特征增强成像。因此,所提算法可在SAR回波复数据处理中同时实现稀疏特征和结构特征联合增强。实验选取SAR、SAR地面动目标成像(SAR ground moving target imaging, SAR-GMTIm)和逆SAR的仿真数据与实测数据,分别从定性和定量两种角度对所提算法和传统算法进行对比,其中定量分析时采用相变图(phase transition diagram, PTD)方法来验证所提算法的重建能力,从而验证了本文所提算法应用于SAR稀疏与结构特征增强的有效性与优越性。

关键词: 合成孔径雷达, 交替方向多乘子法, 结构特征增强, 相变图

Abstract:

In synthetic aperture radar (SAR) imagery, the conventional convex optimization algorithms based on least absolute shrinkage and selection operator (Lasso shorted) may lead to the loss of structural features in weak scattering and affect the accuracy of the sparse signal recovery when sparsity enhancement is carried out. To solve this problem, a novel algorithm based on two-layer sparse group Lasso of alternating direction method of multipliers (SGL-ADMM) is proposed in this paper. Based on the block structure (group) feature of the scatterer as a prior, the proposed method firstly introduces the proximal operator corresponding to ?1 norm according to the classified feature of the SAR data. Then, it realizes the sparse feature enhancement in the first-layer and second-layer SAR group by using the Gauss-Seidel strategy to perform dual iterative operation for the proximal operators in the ADMM framework. In addition, the ?F norm in the mixed norm is the Gaussian penalty item, which can smooth the SAR echo data for realizing the enhanced structural features of SAR, accordingly. Therefore, the proposed algorithm can realize the joint enhancement of sparse feature and structure feature during echoed complex SAR data processing. In the experiments, the simulation data and the measured data of SAR, SAR ground moving target imaging (SAR-GMTIm) and inverse SAR are selected to compare the proposed algorithm with the traditional algorithm from the qualitative and quantitative perspectives. The phase transition diagram (PTD) method is used to verify the reconstruction ability of the proposed algorithm in the qualitative analysis, so as to verify the effectiveness and superiority of the proposed algorithm in SAR sparese and structural feature enhancement.

Key words: synthetic aperture radar (SAR), alternating direction method of multipliers (ADMM), structural feature enhancement, phase transition diagram (PTD)

中图分类号: