1 |
HUANG L , SONG J M , ZHANG M Q , et al. Optical flow based guidance system design for semi-strapdown image homing guided missiles[J]. Chinese Journal of Aeronautics, 2016, 29 (5): 1345- 1354.
doi: 10.1016/j.cja.2016.08.011
|
2 |
齐航, 袁健全, 李磊, 等. 基于深度学习的红外烟幕区域分割技术[J]. 控制与信息技术, 2019, (4): 18- 22, 57.
|
|
QI H , YUAN J Q , LI L , et al. A method of smoke area segmentation for infrared images based on deep learning[J]. Control and Information Technology, 2019, (4): 18- 22, 57.
|
3 |
YUAN J , YUAN W , JIA Y , et al. Renovated identifying method of the active infrared smoke based on the texture feature analysis[J]. Journal of Safety and Environment, 2016, 16 (2): 86- 89.
|
4 |
SONG W , WANG Y P , ZHANG W J , et al. Real-time smoke detection in substation based on color and motion features[J]. Transducer and Microsystem Technologies, 2015, 34 (12): 127- 130.
|
5 |
YUAN F N , SHI J T , XIA X . High-order local ternary patterns with locality preserving projection for smoke detection and image classification[J]. Information Sciences, 2016, 372 (1): 225- 240.
|
6 |
YE W , ZHAO J H , WANG S , et al. Dynamic texturebased smoke detection using surfacelet transformand HMT model[J]. Fire Safety Journal, 2015, 73 (4): 91- 101.
|
7 |
NAYAK S R , MISHRA J . A modified triangle box-counting with precision in error fit[J]. Journal of Information and Optimization Sciences, 2018, 39 (1): 113- 128.
doi: 10.1080/02522667.2017.1372155
|
8 |
PANIGRAHY C , AYAN S , NIHAR K M . Image texture surface analysis using an improved differential box counting based fractal dimension[J]. Powder Technology, 2020, 364 (15): 279- 299.
|
9 |
LIU A J, LU J, ZHANG G Q, et al. Concept drift detection via equal intensity k-means space partitioning[EB/OL].[2020-5-21].https://arxiv.org/abs/2004.11587.
|
10 |
ZHANG Q X, LIN G H, ZHANG Y M, et al. Wildland forest fire smoke detection based on faster R-CNN using synthetic smoke images[C]//Proc.of the Procedia Engineering, 2018: 441-446.
|
11 |
梁杰, 李磊. 基于深度学习的红外图像遮挡干扰检测方法[J]. 兵工学报, 2019, 40 (7): 1401- 1410.
doi: 10.3969/j.issn.1000-1093.2019.07.009
|
|
LIANG J , LI L . Infrared image occlusion interference detection method based on deep learning[J]. Acta Armamentarii, 2019, 40 (7): 1401- 1410.
doi: 10.3969/j.issn.1000-1093.2019.07.009
|
12 |
FRIZZI S, KAABI R. Convolutional neural network for video fire and smoke detection[C]//Proc.of the IEEE Industrial Electronics Society, 2016: 877-882.
|
13 |
YIN Z J , WAN B Y , YUAN F N , et al. A deep normalization and convolutional neural network for image smoke detection[J]. IEEE Access, 2017, 5, 18429- 18438.
doi: 10.1109/ACCESS.2017.2747399
|
14 |
XU G , ZHANG Y M , ZHANG Q X , et al. Video smoke detection based on deep saliency network[J]. Fire Safety Journal, 2019, 105 (9): 277- 285.
|
15 |
YUAN F N , ZHANG L , XIA X , et al. Deep smoke segmentation[J]. Neurocomputing, 2019, 357 (3): 248- 260.
|
16 |
汪梓艺, 苏育挺. 一种改进Deeplabv3网络的烟雾分割算法[J]. 西安电子科技大学学报, 2019, 46 (6): 52- 59.
|
|
WANG Z Y , SU Y T . Algorithm for segmentation of smoke using the improved DeeplabV3 network[J]. Journal of Xidian University, 2019, 46 (6): 52- 59.
|
17 |
LIANG M, HU X L. Recurrent convolutional neural network for object recognition[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3367-3375.
|
18 |
LI X Q , CHEN Z X , WU Q M , et al. 3D parallel fully convolutional networks for real-time video wildfire smoke detection[J]. IEEE Trans.on Circuits and Systems for Video Technology, 2018, 30 (1): 89- 103.
|
19 |
LONG J , SHELHAMER E , DARRELL T . Fully convolutional networks for semantic segmentation[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2014, 39 (4): 640- 651.
|
20 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[EB/OL].[2020-05-22]. https://arxiv.org/abs/1505.04597.
|
21 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. [2020-5-22].https://arxiv.org/abs/1706.05587.
|
22 |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[EB/OL].[2020-5-22].https://arxiv.org/abs/1802.02611.
|
23 |
杨波,陶青川,董沛君.改进Deeplab v3+网络的手术器械分割方法[EB/OL].[2020-05-22]. http://kns.cnki.net/kcms/detail/11.2127.TP.20200221.0832.004.html.
|
|
YANG B, TAO Q C, DONG P J, et al. Surgical instrument segmentation method based on improved Deeplabv3+network[EB/OL]. Computer Engineering and Applications: 1-7[2020-05-22]. http://kns.cnki.net/kcms/detail/11.2127.TP.20200221.0832.004.html.
|
24 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc.of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
25 |
HU J, SHEN L, SUN G. Squeeze-and-excitation Networks[C]// Proc.of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|