| 1 | 刘仲民, 王阳, 李战明, 等.  基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48 (6): 1931- 1937. | 
																													
																						|  | LIU Z M ,  WANG Y ,  LI Z M , et al.  Image segmentation algorithm based on SLIC and fast nearest neighbor region merging[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48 (6): 1931- 1937. | 
																													
																						| 2 | AKAY B .  A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding[J]. Applied Soft Computing, 2013, 13 (6): 3066- 3091. doi: 10.1016/j.asoc.2012.03.072
 | 
																													
																						| 3 | YAO X T ,  LI Z Y ,  LIU L , et al.  Multi-threshold image segmentation based on improved grey wolf optimization algorithm[J]. IOP Conference Series Earth and Environmental Science, 2019, 252 (4): 042105. | 
																													
																						| 4 | WANG S K ,  JIA H M ,  PENG X X .  Modified salp swarm algorithm based multilevel thresholding for color i mage segmentation[J]. Mathematical Bioences and Engineering, 2019, 17 (1): 700- 724. | 
																													
																						| 5 | SATHYA P D ,  KAYALVIZHI R .  Optimal multilevel thresholding using bacterial foraging algorithm[J]. Expert Systems with Applications, 2011, 38 (12): 15549- 15564. doi: 10.1016/j.eswa.2011.06.004
 | 
																													
																						| 6 | LU Y T ,  ZHAO W L ,  MAO X B .  Multi-threshold image segmentation based on improved particle swarm optimization and maximum entropy method[J]. Advanced Materials Research, 2014, 989 (994): 3649- 3653. | 
																													
																						| 7 | CUEVAS E ,  FELIPE S ,  ZALDIVAR D , et al.  A multi-threshold segmentation approach based on Artificial Bee Colony optimization[J]. Applied Intelligence, 2012, 37 (3): 321- 336. doi: 10.1007/s10489-011-0330-z
 | 
																													
																						| 8 | QIN J ,  SHEN X J ,  MEI F , et al.  An Otsu multi-thresholds segmentation algorithm based on improved ACO[J]. The Journal of Supercomputing, 2019, 75 (2): 955- 967. doi: 10.1007/s11227-018-2622-0
 | 
																													
																						| 9 | DEHSHIBI M M ,  SOURIZAEI M ,  FAZLALI M , et al.  A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding[J]. Multimedia Tools & Applications, 2016, 76 (14): 15951- 15986. | 
																													
																						| 10 | XUE J K ,  SHEN B .  A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engneering, 2020, 8 (1): 22- 34. | 
																													
																						| 11 | MENG X B ,  GAO X Z ,  LU L , et al.  A new bio-inspired optimisation algorithm: bird swarm algorithm[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2016, 28 (4): 673- 687. | 
																													
																						| 12 | OSTU N .  A threshold selection method from gray-histogram[J]. IEEE Trans.on Systems, Man, and Cybernetics, 1978, 9 (1): 62- 66. | 
																													
																						| 13 | WU Y ,  ZHOU Y ,  SAVERIADES G , et al.  Local Shannon entropy measure with statistical tests for image randomness[J]. Information Sciences, 2013, 222, 323- 342. doi: 10.1016/j.ins.2012.07.049
 | 
																													
																						| 14 | 罗钧, 刘建强, 庞亚男.  基于邻域搜索JADE的二维Otsu多阈值图像分割[J]. 系统工程与电子技术, 2020, 42 (10): 2164- 2171. doi: 10.3969/j.issn.1001-506X.2020.10.03
 | 
																													
																						|  | LUO J ,  LIU J Q ,  PANG Y N .  Multi-threshold image segmen tation of 2D Otsu based on neighborhoods search JADE[J]. Systems Engineering and Electronics, 2020, 42 (10): 2164- 2171. doi: 10.3969/j.issn.1001-506X.2020.10.03
 | 
																													
																						| 15 | OLIVA D ,  CUEVAS E ,  PAJARES G , et al.  Multilevel thresholding segmentation based on harmony search optimization[J]. Journal of Applied Mathematics, 2013, 575414. |