系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (2): 300-310.doi: 10.12305/j.issn.1001-506X.2021.02.03
收稿日期:
2020-06-03
出版日期:
2021-02-01
发布日期:
2021-03-16
作者简介:
时艳玲 (1983-),女,副教授,博士,主要研究方向为海杂波的散射特性分析、复杂电磁环境下的目标检测和雷达信号处理。E-mail:基金资助:
Yanling SHI(), Zipeng LIU(), Xueliang ZHANG(), Weiliang GU()
Received:
2020-06-03
Online:
2021-02-01
Published:
2021-03-16
摘要:
针对传统的时频分析方法对海杂波分析有限的问题,提出一种基于经验模态分解(empirical mode decomposition, EMD)能量占比的海面漂浮小目标特征检测方法。首先,采用EMD将接收回波分为独立不同尺度的若干个固有模态(intrinsic mode function, IMF)分量,实现对接收回波的频率从高频到低频的分解。然后,分别建立IMF分量与接收回波数据的相关系数,并利用平均均值-标准差之比作为筛选IMF分量的准则,自动筛选出能量较大且波动平稳的低阶IMF分量。最后,提取IMF分量在原始信号中的平均能量占比作为特征,利用蒙特卡罗方法设置门限,进行海面目标异常检测。实测数据的结果显示,所提算法的性能优于对比算法。
中图分类号:
时艳玲, 刘子鹏, 张学良, 顾为亮. 基于EMD能量占比的海面漂浮小目标特征检测[J]. 系统工程与电子技术, 2021, 43(2): 300-310.
Yanling SHI, Zipeng LIU, Xueliang ZHANG, Weiliang GU. Feature detection of floating small target on the sea surface based on EMD energy proportion[J]. Systems Engineering and Electronics, 2021, 43(2): 300-310.
表1
IPIX雷达数据和CSIR数据说明"
数据编号 | 数据名称 | 风速/(km/h) | 浪高/m | 角度/(°) | 目标单元 | 受影响单元 |
1 | 19931107_135603_starea17 | 9 | 2.2 | 9 | 9 | 8, 10, 11 |
2 | 19931108_220902_starea26 | 9 | 1.1 | 97 | 7 | 6, 8 |
3 | 19931109_191449_starea30 | 19 | 0.9 | 98 | 7 | 6, 8 |
4 | 19931109_202217_starea31 | 19 | 0.9 | 98 | 7 | 6, 8, 9 |
5 | 19931110_001635_starea40 | 9 | 1.0 | 88 | 7 | 5, 6, 8 |
6 | 19931111_163625_starea54 | 20 | 0.7 | 8 | 8 | 7, 9, 10 |
7 | 19931118_023604_stareC0000280 | 10 | 1.6 | 130 | 8 | 7, 9, 10 |
8 | 19931118_162155_stareC0000310 | 33 | 0.9 | 30 | 7 | 6, 8, 9 |
9 | 19931118_162658_stareC0000311 | 33 | 0.9 | 40 | 7 | 6, 8, 9 |
10 | 19931118_174259_stareC0000320 | 28 | 0.9 | 30 | 7 | 6, 8, 9 |
11 | TFA10_001 | 6.889 7 | 1.850 3 | 172.3 | 16 | 15, 17 |
表2
第1组数据(#17)和第4组数据(#31)在HH极化下不同IMF分量的能量占比检测概率"
分量 | 检测概率 | ||||||
#17 | #31 | ||||||
pf =0.001 | pf =0.01 | pf =0.1 | pf =0.001 | pf =0.01 | pf =0.1 | ||
IMF1 | 0.448 | 0.558 | 0.837 | 0.148 | 0.184 | 0.356 | |
IMF2 | 0.819 | 0.860 | 0.925 | 0.232 3 | 0.396 8 | 0.582 7 | |
IMF3 | 0.641 | 0.765 | 0.935 | 0.531 | 0.727 | 0.858 | |
IMF4 | 0.236 | 0.385 | 0.631 | 0.211 | 0.332 | 0.576 | |
IMF5 | 0.011 | 0.029 | 0.075 | 0.021 | 0.028 | 0.150 |
表3
检测概率关于ASCR分布表"
数据编号 | HH | VV | HV | VH | |||||||
ASCR/dB | pd | ASCR/dB | pd | ASCR/dB | pd | ASCR/dB | pd | ||||
1 | 18.309 | 0.746 7 | 3.675 | 0.277 5 | 12.961 | 0.757 1 | 13.007 | 0.748 2 | |||
2 | 4.276 | 0.461 6 | 5.694 | 0.911 6 | 5.934 | 0.854 6 | 5.926 | 0.851 7 | |||
3 | -0.343 | 0.597 9 | 1.974 | 0.774 2 | 3.637 | 0.854 4 | 3.552 | 0.821 8 | |||
4 | 6.476 | 0.553 5 | 8.173 | 0.847 7 | 7.388 | 0.683 9 | 7.362 | 0.853 6 | |||
5 | 9.533 | 0.098 4 | 10.950 | 0.992 6 | 12.890 | 0.934 9 | 12.846 | 0.964 | |||
6 | 17.977 | 0.999 1 | 8.847 | 1.000 0 | 16.143 | 0.996 7 | 16.184 | 1.000 0 | |||
7 | 3.986 | 0.806 8 | 4.397 | 0.981 2 | 7.327 | 0.910 3 | 7.360 | 0.914 4 | |||
8 | 2.261 | 0.304 4 | -1.491 | 0.441 7 | 4.959 | 0.954 2 | 4.963 | 0.956 | |||
9 | 11.924 | 1.000 0 | 8.683 | 1.000 0 | 14.733 | 1.000 0 | 14.730 | 1.000 0 | |||
10 | 11.817 | 0.998 2 | 6.772 | 1.000 0 | 13.730 | 1.000 0 | 13.674 | 1.000 0 | |||
11 | — | — | 19.357 | 1.000 0 | — | — | — | — |
1 |
ZHOU W , XIE J H , ZHANG B Q , et al. Maximum likelihood detector in Gamma-distributed sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (11): 1705- 1709.
doi: 10.1109/LGRS.2018.2859785 |
2 |
ZHOU W , XIE J H , LI G P , et al. Robust CFAR detector with weighted amplitude iteration in nonhomogeneous sea clutter[J]. IEEE Trans.on Aerospace and Electronic Systems, 2017, 53 (3): 1520- 1535.
doi: 10.1109/TAES.2017.2671798 |
3 | LIU H Y , SONG J , XIO NG W , et al. Analysis of amplitude statistical and correlation characteristics of high grazing angle sea- clutter[J]. The Journal of Engineering, 2019, (2): 6829- 6833. |
4 |
SHI Y L . Three GLRT detectors for range distributed target in grouped partially homogeneous radar environment[J]. Signal Processing, 2017, 135, 121- 131.
doi: 10.1016/j.sigpro.2016.12.030 |
5 | 时艳玲, 林毓峰, 宛汀. 部分均匀海杂波中雷达目标的平滑自适应检测[J]. 系统工程与电子技术, 2016, 38 (12): 2745- 2751. |
SHI Y L , LIN Y F , WAN T . Smooth adaptive detector for ra dar target in partially homogeneous sea clutter environment[J]. Systems Engineering and Electronic s, 2016, 38 (12): 2745- 2751. | |
6 | 时艳玲, 林毓峰, 梁丹丹. 非平稳海杂波背景下子带分段ANMF检测器[J]. 系统工程与电子技术, 2018, 40 (4): 782- 789. |
SHI Y L , LIN Y F , LIANG D D . Subband segmented ANMF detector in non-stationary sea clutter[J]. Systems Engineering and Electronics, 2018, 40 (4): 782- 789. | |
7 |
WANG Y H , LI Q , ZHANG Y M . A statistical distribution of quad-pol X-band sea clutter time series acquired at a grazing angle[J]. Acta Oceanologica Sinica, 2018, 37 (3): 94- 102.
doi: 10.1007/s13131-018-1202-8 |
8 | 施赛楠, 水鹏朗, 杨春娇, 等. 基于逆高斯纹理空间相关性的雷达目标检测[J]. 系统工程与电子技术, 2017, 39 (10): 2215- 2220. |
SHI S N , SHUI P L , YANG C J , et al. Radar target detection based on spatial correlation of inverse-Gaussian texture[J]. Systems Engineering and Electronics, 2017, 39 (10): 2215- 2220. | |
9 |
LEUNG H , LO T . Chaotic radar signal processing over the sea[J]. IEEE Journal of Ocean Engineering, 1993, 18 (3): 287- 295.
doi: 10.1109/JOE.1993.236367 |
10 | XI C P, XIONG G, YANG Y H, et al. Simulating multi-fractal sea clutter and surface based on the random multiplicative model[C]//Proc.of the IET Radar Conference, 2019. |
11 |
FAN Y F , TAO M L , SU J , et al. Weak target detection based on joint fractal characteristics of autoregressive spectrum in sea clutter background[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (12): 1824- 1828.
doi: 10.1109/LGRS.2019.2912329 |
12 |
MCDONALD M , DAMINI A . Limitations of nonlinear chaotic dynamics in predicting sea clutter returns[J]. IEEE Procee-dings-Radar, Sonar and Navigation, 2004, 151 (2): 105- 113.
doi: 10.1049/ip-rsn:20040261 |
13 |
HU J , TUNG W W , GAO J B . Detection of low observable targets within sea clutter by structure function based multifractal analysis[J]. IEEE Trans.on Antenna and Propagation, 2006, 54 (1): 136- 143.
doi: 10.1109/TAP.2005.861541 |
14 |
WU X B , WU Y Q , CHENG F , et al. Extraction of sea-state parameters with an X-band radar[J]. Wuhan University Journal of Natural Sciences, 2008, 13 (1): 55- 61.
doi: 10.1007/s11859-008-0111-7 |
15 | PAN M Y , CHEN J J , XIE S D , et al. Sea clutter suppression algorithm based on signal resonance[J]. The Journal of Engineering, 2019, 21 (11): 7360- 7364. |
16 |
于晓涵, 陈小龙, 黄勇, 等. 雷达动目标短时稀疏分数阶表示域探测方法[J]. 系统工程与电子技术, 2018, 40 (11): 2426- 2432.
doi: 10.3969/j.issn.1001-506X.2018.11.06 |
YU X H , CHEN X L , HUANG Y , et al. Radar detection for moving target in short-time sparse fractional representative domain[J]. Systems Engineering and Electronics, 2018, 40 (11): 2426- 2432.
doi: 10.3969/j.issn.1001-506X.2018.11.06 |
|
17 |
HUANG N E , SHEN Z , LONG S R , et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-statio nary time series analysis[J]. Proceedings of the R oyal Society A: Mathematical, Physical and Engineering Science, 1998, 454 (1971): 903- 995.
doi: 10.1098/rspa.1998.0193 |
18 |
LI Y , YANG Y H , ZHU X Y . Target detection in sea clutter based on multifractal characteristics after empirical mode decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (9): 1547- 1551.
doi: 10.1109/LGRS.2017.2721463 |
19 | 张冰瑞, 雷志勇, 周海峰, 等. 基于HHT的高频雷达机动目标参数估计[J]. 系统工程与电子技术, 2018, 40 (3): 546- 551. |
ZHANG B R , LEI Z Y , ZHOU H F , et al. Maneuvering targets parameters estimation algorithm based on HHT in high-frequency radar[J]. Systems Engineering and Electronics, 2018, 40 (3): 546- 551. | |
20 |
张建, 黄勇, 关键, 等. 基于低频IMF能量比的微弱目标检测算法[J]. 信号处理, 2011, 27 (12): 1850- 1859.
doi: 10.3969/j.issn.1003-0530.2011.12.009 |
ZHANG J , HUANG Y , GUAN J , et al. Weak target detection based on the proportion of the low frequenc y IMF energy[J]. Signal Processing, 2011, 27 (12): 1850- 1859.
doi: 10.3969/j.issn.1003-0530.2011.12.009 |
|
21 | 关键, 张建. 基于固有模态能量熵的微弱目标检测算法[J]. 电子与信息学报, 2011, 33 (10): 2494- 2499. |
GUAN J , ZHANG J . Weak target detection based on intrinsic mode energy entropy[J]. Journal of Electronics & Information Technology, 2011, 33 (10): 2494- 2499. | |
22 | 张林, 李秀友, 刘宁波, 等. 基于分形特性改进的EMD目标检测算法[J]. 电子与信息学报, 2016, 38 (5): 1041- 1046. |
ZHANG L , LI X Y , LIU N B , et al. Improved EMD target detection method based on mono fractal characteristics[J]. J ournal of Electronics & Information Technology, 2016, 38 (5): 1041- 1046. | |
23 |
SHUI P L , LI D C , XU S W . Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Trans.on Aerospace and Electronic Systems, 2014, 50 (2): 1416- 1430.
doi: 10.1109/TAES.2014.120657 |
24 | 陈世超, 罗丰, 胡冲, 等. 基于多普勒谱非广延熵的海面目标检测方法[J]. 雷达学报, 2019, 8 (3): 344- 354. |
CHEN S C , LUO F , HU C , et al. Small target detection in sea clutter background based on tsallis entropy of doppler spectrum[J]. Journal of Radars, 2019, 8 (3): 344- 354. | |
25 | HAYKIN S. The McMaster IPIX radar sea clutter database[EB/OL].[2020-05-25]. http://soma.ece.mcmaster.ca/ipix/. |
[1] | 王岩韬, 杨拯. 航班运行风险网络的传播与控制改进[J]. 系统工程与电子技术, 2021, 43(9): 2544-2552. |
[2] | 彭正红, 杨德贵, 王行, 王浩, 朱政亮. 基于趋势估计的微多普勒分离与特征提取算法[J]. 系统工程与电子技术, 2021, 43(12): 3452-3461. |
[3] | 张丹娜, 钱锋, 冯辉, 闻年成. Walsh码软扩频信号降噪算法[J]. 系统工程与电子技术, 2020, 42(4): 773-780. |
[4] | 安影, 范训礼, 陈莉, 刘佩. 结合FABEMD和改进的显著性检测的图像融合[J]. 系统工程与电子技术, 2020, 42(2): 292-300. |
[5] | 吴诗辉, 李正欣, 张发, 刘晓东, 周宇. 基于适应值曲面分析的全部局部极值搜索算法[J]. 系统工程与电子技术, 2020, 42(2): 346-355. |
[6] | 蒋铁军, 张怀强, 周成杰. 事件影响下的时间序列多尺度集成预测[J]. 系统工程与电子技术, 2020, 42(2): 390-397. |
[7] | 雷震烁, 刘松涛, 葛杨, 温镇铭. 干扰效果在线评估参数筛选与特征表示方法[J]. 系统工程与电子技术, 2020, 42(12): 2755-2760. |
[8] | 时维国, 国明. 基于MEEMD-PE与CS-WNN模型的网络时延预测[J]. 系统工程与电子技术, 2020, 42(1): 184-190. |
[9] | 包志强, 徐笑. 基于相关系数的两级盲频谱感知算法[J]. 系统工程与电子技术, 2018, 40(5): 1124-1128. |
[10] | 关欣, 孙贵东, 衣晓, 赵静. 基于犹豫模糊集统计相关系数的多源异类数据融合识别[J]. 系统工程与电子技术, 2018, 40(3): 509-517. |
[11] | 陈俊洵, 程龙生, 余慧, 胡绍林. 基于EMD-SVD与马田系统的复杂系统健康状态评估[J]. 系统工程与电子技术, 2017, 39(7): 1542-1548. |
[12] | 王璐, 李建勋, 何婷婷. 峰度检验加窗的EMD脉冲星信号消噪方法[J]. 系统工程与电子技术, 2017, 39(6): 1208-1214. |
[13] | 陈海龙, 王长龙, 左宪章, 朱红运. 磁记忆梯度张量测量信号预处理方法[J]. 系统工程与电子技术, 2017, 39(3): 488-493. |
[14] | 杨小强, 李沛, 黄杰, 韩艾洋. 基于极值波延拓的端点效应处理方法[J]. 系统工程与电子技术, 2016, 38(9): 1987-1992. |
[15] | 陈寅生, 姜守达, 刘晓东, 杨京礼, 王祁. 基于EEMD样本熵和SRC的自确认气体传感器故障诊断方法[J]. 系统工程与电子技术, 2016, 38(5): 1215-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||