系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (1): 163-170.doi: 10.3969/j.issn.1001-506X.2021.01.20

• 系统工程 • 上一篇    下一篇

基于改进型生成对抗网络的指挥信息系统模拟数据生成算法

田相轩(), 石志强*()   

  1. 陆军装甲兵学院信息通信系, 北京 100072
  • 收稿日期:2020-02-27 出版日期:2020-12-25 发布日期:2020-12-30
  • 通讯作者: 石志强 E-mail:tian_xiangxuan@qq.com;13910246186@139.com
  • 作者简介:田相轩(1990-),男,助教,硕士,主要研究方向为指挥信息系统模拟训练、模拟训练数据分析。E-mail:tian_xiangxuan@qq.com
  • 基金资助:
    陆军武器装备军内科研科学研究重点资助课题

Simulation data generation algorithm based on evolutional generative adversarial networks for command information system

Xiangxuan TIAN(), Zhiqiang SHI*()   

  1. Information and Communication Department, Army Armored Force Academy, Beijing 100072, China
  • Received:2020-02-27 Online:2020-12-25 Published:2020-12-30
  • Contact: Zhiqiang SHI E-mail:tian_xiangxuan@qq.com;13910246186@139.com

摘要:

针对指挥信息系统模拟训练数据缺乏的问题,提出一种基于改进型生成对抗网络的模拟数据生成算法,构建指挥信息系统履行使命任务支撑能力指标体系,同时提出指挥信息系统非结构化信息处理的映射方式和拟合度因子,修正损失函数,从而提高优化水平。仿真结果表明,所提算法能够生成与原始数据分布相似度较高的数据集,为指挥信息系统全元素的模拟训练提供数据支撑。

关键词: 生成对抗网络, 指挥信息系统, 模拟数据集

Abstract:

Aiming at the lack of simulation training data in command information system, a simulation data generation algorithm based on evolutional generative adversarial networks (EGAN-SDG) is put forword, which constructs the index system of command information system's ability to fulfill missions and tasks. The mapping mode of unstructured information processing in command information system and the fitting factor to modify the loss function to improve the optimization performance are proposed. Simulation results show that the algorithm can generate data sets with high similarity distribution of the original data, and can provide data support for the simulation training of all elements of the command information system.

Key words: generative adversarial network, command information system, simulation data set

中图分类号: