1 |
LIANG X , MENG G L , XU Y M , et al. A geometrical path planning method for unmanned aerial vehicle in 2D/3D complex environment[J]. Intelligent Service Robotics, 2018, 11 (3): 301- 312.
|
2 |
DONG Y Q , EFE C , ERDAL K . Faster RRT-based nonholonomic path planning in 2D building environments using skeleton-constrained path biasin[J]. Journal of Intelligent & Robotic Systems, 2018, 89 (3): 387- 401.
|
3 |
YANG Q , YANG Z , HU G X , et al. A new fusion chemical reaction optimization algorithm based on random molecules for multi-rotor UAV path planning in transmission line inspection[J]. Journal of Shanghai Jiao tong University (Science), 2018, 23 (5): 671- 677.
|
4 |
JON V S, GRAVAN O H, BJERKNES J D, et al. Multi-UAV cooperative path planning for sensor placement using cooperative coevolving genetic strategy[C]//Proc.of the International Conference in Swarm Intelligence, 2017: 433-444.
|
5 |
ZHANG X Y , LU X Y , JIA S M , et al. A novel phase angleen-coded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning[J]. Applied Soft Computing, 2018, 70, 371- 388.
|
6 |
MOHAMMADREZA R , MANISH K , MOHAMMAD S . Grey wolf optimization based sense and avoid algorithm in a Bayesian framework for multiple UAV path planning in an uncertain environment[J]. Aerospace Science and Technology, 2018, 77, 168- 179.
|
7 |
CHEN Y B , YU J Q , MEI Y S . Modified central force optimization algorithm for 3D UAV path planning[J]. Neurocomputing, 2016, 171 (C): 878- 888.
|
8 |
MILAD N , ESMAEEL K , SAMIRA D . Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm[J]. Expert Systems with Applications, 2019, 115, 106- 120.
|
9 |
ZHANG D F , DUAN H B , et al. Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV cooperative path planning[J]. Neurocomputing, 2018, 313, 229- 246.
|
10 |
WU X D , BAI W B , XIE Y E , et al. A hybrid algorithm of particle swarm optimization, metropolis criterion and RTS smoother for path planning of UAVs[J]. Applied Soft Computing Journal, 2018, 73, 735- 747.
|
11 |
MARCO A C , VICTOR A R , URIEL H B . Mobile robot path planning using artificial bee colony and evolutionary programming[J]. Applied Soft Computing, 2015, 30, 319- 328.
|
12 |
李军华, 刘群芳. 基于稀疏A*算法与文化算法的无人机动态航迹规划[J]. 应用科学学报, 2017, 35 (1): 128- 138.
|
|
LI J H , LIU Q F . Dynamic path planning of unmanned aerial vehicle based on sparse A* algorithm and cultural algorithm[J]. Journal of Applied Sciences, 2017, 35 (1): 128- 138.
|
13 |
柳长安, 王晓鹏. 基于改进灰狼优化算法的无人机三维航迹规划[J]. 华中科技大学学报(自然科学版), 2017, 45 (10): 38- 42.
|
|
LIU C A , WANG X P . Three dimensional route planning for unmanned aerial vehicle based on improved grey wolf optimizer algorithm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45 (10): 38- 42.
|
14 |
ZHAO Y J , ZHENG Z , YANG L . Survey on computational-intelligence-based UAV path planning[J]. Knowledge-Based Systems, 2018, 158, 54- 64.
|
15 |
PAUN G. Computing with Membranes[D]. Turku: Turku Centre for Computer Science, 1998.
|
16 |
DONG W B , ZHOU K , QI H Q , et al. A tissue P system based evolutionary algorithm for multi-objective VRPTW[J]. Swarm and Evolutionary Computation, 2018, 39, 310- 322.
|
17 |
PENG H , WANG J . A hybrid approach based on tissue P systems and artificial bee colony for ⅡR system identification[J]. Neural Computing and Applications, 2017, 28 (9): 2675- 2685.
|
18 |
SONG B S , PAN L Q , et al. An efficient time-free solution to QSAT problem using P systems with proteins on membranes[J]. Information and Computation, 2017, 256, 287- 299.
|
19 |
黄长强, 赵克新. 基于改进蚁狮算法的无人机三维航迹规划[J]. 电子与信息学报, 2018, 40 (7): 1532- 1537.
|
|
HUANG C Q , ZHAO K X . Three dimensional path planning of UAV with improved ant lion optimizer[J]. Journal of Electronics Information Technology, 2018, 40 (7): 1532- 1537.
|
20 |
LYU L , FAN T H , LI Q . Object tracking with improved firefly algorithm[J]. International Journal of Computing Science and Mathematics, 2018, 9 (3): 219- 231.
|
21 |
ANTONIO B , PATRICIA R R , FRANCISCO T R . A hyperbolastic type-I diffusion process: parameter estimation by means of the firefly algorithm[J]. Biosystems, 2018, 163, 11- 22.
|
22 |
LI P W , ZHAO J , XIE Z F , et al. General central firefly algorithm based on different learning time[J]. International Journal of Computing Science and Mathematics, 2017, 8 (5): 447- 456.
|
23 |
NGAAM J C , DING X M . A non-homogeneous firefly algorithm and its convergence analysis[J]. Journal of Optimization Theory and Applications, 2016, 170 (2): 616- 628.
|
24 |
ZHANG X . A modified artificial bee colony algorithm for image denoising using parametric wavelet thresholding method[J]. Pattern Recognition and Image Analysis, 2018, 28 (3): 557- 568.
|
25 |
ZHANG X , ZHANG X , WANG L . Antenna design by an adaptive variable differential artificial bee colony algorithm[J]. IEEE Trans.on Magnetics, 2018, 54 (3): 7201704.
|
26 |
SARAVANAN S , GOKULRAJ P . Improving performance an artificial bee colony optimisation on CloudSim[J]. International Journal of Internet Technology and Secured Transactions, 2018, 8 (4): 573- 582.
|
27 |
SHIMPI S J , JAGDISH C B . Artificial bee colony algorithm with global and local neighborhoods[J]. International Journal of System Assurance Engineering and Management, 2018, 9 (3): 589- 601.
|
28 |
XIE Y , SAVVARI A , ANTONIOS T . Sizing of hybrid electric propulsion system for retrofitting a mid-scale aircraft using non-dominated sorting genetic algorithm[J]. Aerospace Science and Technology, 2018, 82, 323- 333.
|
29 |
HUANG Y , FEI M R . Motion planning of robot manipulator based on improved NSGA-Ⅱ[J]. International Journal of Control Automation and System, 2018, 16 (4): 1878- 1886.
|
30 |
LYU L , ZHAO J , WANG J Y , et al. Multi-objective firefly algorithm based on compensation factor and elite learning[J]. Future Generation Computer Systems, 2019, 91, 37- 47.
|
31 |
GONG D W , HAN Y Y , SUN J Y . A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop scheduling problems[J]. Knowledge-Based Systems, 2018, 148, 115- 130.
|