1 |
DONG J , WU G W , YANG T T , et al. Battlefield situation awareness and networking based on agent distributed computing[J]. Physical Communication, 2019, 33, 178- 186.
|
2 |
BISHT S , BHARATI H S , TANEJA S B , et al. Command agent belief architecture to support commander decision making in military simulation[J]. Defence Science Journal, 2017, 68 (1): 46- 53.
|
3 |
赵慧赟,张东戈.战场态势感知研究综述[C]//第三届中国指挥控制大会, 2015: 86-91.
|
|
ZHAO H Y, ZHANG D G. Review of battlefield situation awareness research[C]//Proc.of the 3rd China Command and Control Conference, 2015: 86-91.
|
4 |
EUGENE S J, HIEN N, JACOB R, et al. A framework for dynamic context-centric commander decision support[C]//Proc.of the Human Factors and Ergonomics Society Annual Meeting, 2016, 218-222.
|
5 |
ENDSLEY M R. Design and evaluation for situation awareness enhancement[C]//Proc.of the 32nd Human Factors and Ergonomics Society Annual Meeting, 1998.
|
6 |
BASS T. Multisensor data fusion for next generation distributed intrusion detection systems[C]//Porc.of the IRIS National Symposium on Sensor and Data Fusion, 1999: 24-27.
|
7 |
WEBB J , AHMAD A , MAYNARD S B , et al. A situation awareness model for information security risk management[J]. Computers & Security, 2014, 44, 1- 15.
|
8 |
LOPEZ L B , CARAGUAY A V , MAESTRE V J M , et al. Towards incidence management in 5G based on situational awareness[J]. Future Internet, 2017, 9 (1): 3- 16.
|
9 |
FRANCESCO D M , ALESSANDRO B , ENRICO Z , et al. An approach based on support vector machines and a K-D tree search algorithm for identification of the failure domain and safest operating conditions in nuclear systems[J]. Progress in Nuclear Energy, 2016, 88, 297- 309.
|
10 |
黄亚锋, 李旭东, 张航峰. 战场态势多尺度表达研究[J]. 系统仿真学报, 2018, 30 (2): 452- 458, 464.
|
|
HUANG Y F , LI X D , ZHANG H F . Multi-scale representation of battlefield situation[J]. Journal of System Simulation, 2018, 30 (2): 452- 458, 464.
|
11 |
李尧, 耿伯英, 李启元. 基于态势熵的战场情报融合系统建模与仿真[J]. 火力与指挥控制, 2019, 44 (12): 56- 60.
|
|
LI Y , GENG B Y , LI Q Y . Modeling and simulation of battlefield intelligence fusion system based on situation entropy[J]. Fire Control & Command Control, 2019, 44 (12): 56- 60.
|
12 |
于淼, 杜正军. 基于作战势能比值的态势评估方法[J]. 军事运筹与系统工程, 2012, 26 (3): 23- 26.
|
|
YU M , DU Z J . Situation evaluation method based on the ratio of combat potential energy[J]. Military Operations Research and Systems Engineering, 2012, 26 (3): 23- 26.
|
13 |
孙雅薇, 周超. 态势图中几种"势"的表征方法[J]. 火力与指挥控制, 2018, 43 (4): 79- 83.
|
|
SUN Y W , ZHOU C . Characterization method of several potential in situation picture[J]. Fire Control & Command Control, 2018, 43 (4): 79- 83.
|
14 |
董浩洋, 张东戈, 万贻平, 等. 战场态势热力图构建方法研究[J]. 指挥控制与仿真, 2017, 39 (5): 1- 8.
|
|
DONG H Y , ZHANG D G , WAN Y P , et al. Research on construction method of heat map for battlefield situation[J]. Command Control & Simulation, 2017, 39 (5): 1- 8.
|
15 |
GATRELL A C , BAILEY T C . Interactive spatial data analysis in medical geography[J]. Social Science & Medicine, 1996, 42 (6): 843- 855.
|
16 |
PAMPHILE T R , LLUÍS J , JEAN-CHRISTOPHE J , et al. Versatile sequential sampling algorithm using kernel density estimation[J]. European Journal of Operational Research, 2020, 284 (1): 201- 211.
|
17 |
WILSON C M , GERARD P . Kernel density estimation for hierarchical data[J]. Communications in Statistics-Theory and Methods, 2020, 49 (6): 1495- 1512.
|
18 |
PRYKE A, MOSTAGHIM S, NAZEMI A. Heatmap visualisation of population based multi objective algorithms[C]//Proc.of the International Conference on Evolutionary Multi-Criterion Optimization, 2007: 361-375.
|
19 |
TUSAR T , FILIPIC B . Visualization of pareto front approximations in evolutionary multiobjective optimization: a critical review and the prosection method[J]. IEEE Trans.on Evolutionary Computation, 2015, 19 (2): 225- 245.
|
20 |
BANDARU S , NG A H C , DEB K . Data mining methods for knowledge discovery in multi-objective optimization: Part A-survey[J]. Expert Systems with Application, 2017, 70, 139- 159.
|
21 |
HERVELLA L S , JOSÉ R , NOVO J , et al. Deep multi-instance heatmap regression for the detection of retinal vessel crossings and bifurcations in eye fundus images[J]. Computer Methods and Programs in Biomedicine, 2019, 186, 105201.
|
22 |
HU Y , SCARROTT C . Evmix: an R package for extreme value mixture modeling, threshold estimation and boundary corrected kernel density estimation[J]. Journal of Statistical Software, 2018, 84 (5): 1- 27.
|
23 |
WANG X , TSOKOS C P , SAGHAFI A . Improved parameter estimation of time dependent kernel density by using artificial neural networks[J]. Journal of Finance & Data Science, 2018, 4 (3): 172- 182.
|
24 |
SHEATHER S J, JONES M C. A reliable data-based bandwidth selection method for kernel density estimation, 1991, 53(3): 683-690.
|
25 |
LEE S , PALMO K , KRIMM S . New out-of-plane angle and bond angle internal coordinates and related potential energy functions for molecular mechanics and dynamics simulations[J]. Journal of Computational Chemistry, 2015, 20 (10): 1067- 1084.
|
26 |
YANG D , HE Y , WU B , et al. Drinking water and sanitation conditions are associated with the risk of malaria among children under five years old in sub-Saharan Africa: a Logistic regression model analysis of national survey data[J]. Journal of Advanced Research, 2020, 21 (1): 1- 13.
|
27 |
RIVERO F , JARA J C . Asymptotic behaviour for prey-predator systems and logistic equations with unbounded time-dependent coefficients[J]. Discrete & Continuous Dynamical Systems-Series A, 2017, 34 (10): 4127- 4137.
|
28 |
CHEN W , SHAHABI H , SHIRZADI A , et al. A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment[J]. Geocarto International, 2018, 33 (12): 1398- 1420.
|
29 |
WANG H Y , ZHU R , MA P . Optimal subsampling for large sample Logistic regression[J]. Journal of the American Statistical Association, 2018, 113 (522): 829- 844.
|
30 |
KANG J , REICH B J , STAICU A M . Scalar-on-image regression via the soft-thresholded gaussian process[J]. Biometrika, 2018, 105 (1): 165- 184.
|