1 |
张良, 祝欢, 杨予昊, 等. 机载预警雷达技术及信号处理方法综述[J]. 电子与信息学报, 2016, 38 (12): 3298- 3306.
|
|
ZHANG L , ZHU H , YANG Y H , et al. Overview on airborne early warning radar technology and signal processing methods[J]. Journal of Electronics & Information Technology, 2016, 38 (12): 3298- 3306.
|
2 |
TALISA S H , O'HAVER K W , COMBERIATE T M , et al. Benefits of digital phased array radars[J]. Proceedings of the IEEE, 2016, 104 (3): 530- 543.
|
3 |
ECKHARDT J M , NIKO J , ADRIAN F , et al. FMCW multiple-input multiple-output radar with iterative adaptive beamforming[J]. IET Radar, Sonar & Navigation, 2018, 12 (11): 1187- 1195.
|
4 |
HU B , WU X C , ZHANG X , et al. Adaptive beamforming based on compressed sensing with gain/phase uncertainties[J]. IEICE Trans.on Fundamentals of Electronics, Communications and Computer Sciences, 2018, 101 (8): 1257- 1262.
|
5 |
ASHWINI D , ZALAWADIA K . Performance analysis of LMS adaptive beamforming algorithm for smart antenna system[J]. International Journal of Computer Applications, 2018, 179 (28): 34- 37.
|
6 |
SHI W L , LI Y S , YIN J W . Improved constraint NLMS algorithm for sparse adaptive array beamforming control applications[J]. Applied Computational Electromagnetics Society Journal, 2019, 34 (3): 419- 424.
|
7 |
杨志伟, 张攀, 陈颖, 等. 导向矢量和协方差矩阵联合迭代估计的稳健波束形成算法[J]. 电子与信息学报, 2018, 40 (12): 2874- 2879.
|
|
YANG Z W , ZHANG P , CHEN Y , et al. Steering vector and covariance matrix joint iterative estimations for robust beamforming[J]. Journal of Electronics & Information Technology, 2018, 40 (12): 2874- 2879.
|
8 |
霍立平, 毛兴鹏, 石运梅, 等. 基于最小敏感度的广义线性自适应波束形成算法[J]. 系统工程与电子技术, 2019, 41 (3): 471- 475.
|
|
HUO L P , MAO X P , SHI Y M , et al. Widely linear adaptive beamforming algorithm based on minimum sensitivity[J]. Systems Eggineering and Electronics, 2019, 41 (3): 471- 475.
|
9 |
唐寅州, 赵高泽. 改进粒子群优化算法自适应波束形成技术[J]. 舰船科学技术, 2018, 40 (9): 111- 115.
|
|
TANG Y Z , ZHAO G Z . Adaptive beamforming technique based on a modified particle swarm optimization[J]. Ship Science and Technology, 2018, 40 (9): 111- 115.
|
10 |
CHAUDHARI P, SOATTO S. Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks[C]//Proc.of the IEEE Information Theory and Applications Workshop, 2018.
|
11 |
SHI W L , LI Y S , SUN L J , et al. Norm constrained noise-free algorithm for sparse adaptive array beamforming[J]. Applied Computational Electromagnetics Society Journal, 2019, 34 (5): 709- 715.
|
12 |
YAO Z , SAXE A M , ADVANI M S , et al. Energy-entropy competition and the effectiveness of stochastic gradient descent in machine learning[J]. Molecular Physics, 2018, 116 (21): 3214- 3223.
|
13 |
BOTTARELLI L , LOOG M . Gaussian process variance reduction by location selectior[J]. Pattern Recognition Letters, 2019, 125 (7): 727- 734.
|
14 |
LIU S T , JIANG H L , LIU L B , et al. Gradient descent using stochastic circuits for efficient training of learning machines[J]. IEEE Trans.on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37 (11): 2530- 2541.
|
15 |
PHILIP C , JIM R , HUBERT D B . Estimating neural sources using a worst-case robust adaptive beamforming approach[J]. Biomedical Signal Processing and Control, 2019, 52, 330- 340.
|
16 |
KHAN Z A , CHAUDHARY N I , ZUBAIR S . Fractional stochastic gradient descent for recommender systems[J]. Electronic Markets, 2019, 29 (2): 275- 285.
|
17 |
JOHNSON R, ZHANG T. Accelerating stochastic gradient descent using predictive variance reduction[C]//Proc.of the 27th Annual Conference on Neural Information Processing Systems, 2013: 315-323.
|
18 |
YANG Z , WANG C , ZHANG Z M , et al. Random Barzilai-Borwein step size for mini-batch algorithms[J]. Engineering Applications of Artificial Intelligence, 2018, 72 (6): 124- 135.
|
19 |
MIN E X , LONG J , CUI J J . Analysis of the variance reduction in SVRG and a new acceleration method[J]. IEEE Access, 2018, 4, 16165- 16175.
|
20 |
CHEN L , ZHOU S S , ZHANG Z . SVRG for a non-convex problem using graduated optimization algorithm[J]. Journal of Intelligent & Fuzzy Systems, 2018, 4, 34 (1): 153- 165.
|
21 |
RAMAZANLI I, NGUYEN H, PHAM H, et al. Adaptive sampling distributed stochastic variance reduced gradient for heterogeneous distributed datasets[J].[2020-06-10]. http://arxiv.org/abs/2002.08528v1.
|
22 |
MING Y W , ZHAO Y W , WU C K , et al. Distributed and asynchronous stochastic gradient descent with variance reduction[J]. Neurocomputing, 2018, 281, 27- 36.
|
23 |
YANG Z , WANG C , ZHANG Z M , et al. Accelerated stochastic gradient descent with step size selection rules[J]. Signal processing, 2019, 159 (6): 171- 186.
|
24 |
LUO Z J , QIAN Y T . Stochastic sub-sampled Newton method with variance reduction[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2019, 17 (6): 62- 68.
|