1 |
YAN K , BAI Y , WU H C , et al. Robust target detection within sea clutter based on graphs[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (9): 7093- 7103.
doi: 10.1109/TGRS.2019.2911451
|
2 |
SHI S N , LIANG X , SHUI P L , et al. Low-velocity small target detection with Doppler-guided retrospective filter in high-resolution radar at fast scan mode[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (11): 8937- 8953.
doi: 10.1109/TGRS.2019.2923790
|
3 |
赵文静, 金明录, 刘文龙. 海杂波环境下改进的中值矩阵检测方法[J]. 系统工程与电子技术, 2018, 40 (10): 2173- 2179.
doi: 10.3969/j.issn.1001-506X.2018.10.03
|
|
ZHAO W J , JIN M L , LIU W L . Modified median matrix detection method for sea clutter environment[J]. Systems Engineering and Electronics, 2018, 40 (10): 2173- 2179.
doi: 10.3969/j.issn.1001-506X.2018.10.03
|
4 |
LI D C , SHUI P L . Floating small target detection in sea clutter via normalized Doppler power spectrum[J]. IET Radar, Sonar & Navigation, 2016, 10 (4): 699- 706.
|
5 |
时艳玲, 林毓峰, 梁丹丹. 非平稳海杂波背景下子带分段ANMF检测器[J]. 系统工程与电子技术, 2018, 40 (4): 782- 789.
|
|
SHI Y L , LIN Y F , LIANG D D . Subband segmented ANMF detector in non-stationary sea clutter[J]. Systems Engineering and Electronics, 2018, 40 (4): 782- 789.
|
6 |
HU J , TUNG W W , GAO J B . Detection of low observable targets with sea clutter by structure function based multifractal analysis[J]. IEEE Trans.on Antennas Propagation, 2006, 54 (1): 136- 143.
doi: 10.1109/TAP.2005.861541
|
7 |
LI Y , YANG Y H , ZHU X Y . Target detection in sea clutter based on multifractal characteristics after empirical mode decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (9): 1547- 1551.
doi: 10.1109/LGRS.2017.2721463
|
8 |
刘宁波, 黄勇, 关键, 等. 实测海杂波频域分形特性分析[J]. 电子与信息学报, 2012, 34 (4): 929- 935.
|
|
LIU N B , HUANG Y , GUAN J , et al. Fractal analysis of real sea clutter in frequency domain[J]. Journal of Electronics & Information Technology, 2012, 34 (4): 929- 935.
|
9 |
SHUI P L , LI D C , XU S W . Tri-feature-based detection of floating targets in sea clutter[J]. IEEE Trans.on Aerospace and Electronic Systems,, 2014, 50 (2): 1416- 1430.
doi: 10.1109/TAES.2014.120657
|
10 |
SHUI P L , GUO Z X , SHI S N . Feature-compression-based detection of sea-surface small targets[J]. IEEE Access, 2020, 8, 8371- 8385.
doi: 10.1109/ACCESS.2019.2962793
|
11 |
XU S W , ZHENG J B , PU J , et al. Sea-surface floating small target detection based on polarization features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (10): 1505- 1509.
|
12 |
GU T C . Detection of small floating targets on the sea surface based on multi-features and principal component analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (5): 809- 813.
doi: 10.1109/LGRS.2019.2935262
|
13 |
SHI S N , SHUI P L . Sea-surface floating small target detection by one-class classifier in time-frequency feature space[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (11): 6395- 6411.
doi: 10.1109/TGRS.2018.2838260
|
14 |
周龙, 韦素媛, 崔忠马, 等. 基于深度学习的复杂背景雷达图像多目标检测[J]. 系统工程与电子技术, 2019, 41 (6): 1258- 1264.
|
|
ZHOU L , WEI S Y , CUI Z M , et al. Multi-objective detection of complex background radar image based on deep learning[J]. Systems Engineering and Electronics, 2019, 41 (6): 1258- 1264.
|
15 |
徐雅楠, 刘宁波, 丁昊, 等. 利用CNN的海上目标探测背景分类方法[J]. 电子学报, 2019, 47 (12): 2505- 2513.
|
|
XU Y N , LIU N B , DING H , et al. Background classification method for marine target detection based on CNN[J]. Acta Electronic Sinica, 2019, 47 (12): 2505- 2513.
|
16 |
DARZIKOLAEI M A, EBRAHIMZADE A, GHOLAMI E. Classification of radar clutters with artificial neural network[C]//Proc.of the 2nd International Conference on Knowledge-Based Engineering and Innovation, 2015: 577-581.
|
17 |
LI G Q, SONG Z Y, FU Q. Small boat detection via time-frequency analysis and densenet[C]//Proc.of the IEEE 4th International Conference on Signal and Image Processing, 2019: 410-414.
|
18 |
MACHADO F J R , BACALLAO V J . Improved shape parameter estimation in K clutter with neural networks and deep learning[J]. International Journal of Interactive Multimedia and Artificial Intelligence, 2016, 3 (7): 96- 103.
doi: 10.9781/ijimai.2016.3714
|
19 |
LI Y Z , XIE P C , TANG Z S , et al. SVM-based sea-surface small target detection: a false-alarm-rate-controllable approach[J]. IEEE Geoscience Remote Sensing Letters, 2019, 16 (8): 1225- 1229.
doi: 10.1109/LGRS.2019.2894385
|
20 |
苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7 (5): 565- 574.
|
|
SU N Y , CHEN X L , GUAN J , et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7 (5): 565- 574.
|
21 |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
22 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
23 |
SZEGEDY C, IOFFE S, VANHOUCKE V. Inception-v4, inception-resnet and the impact of residual connections on learning[C]//Proc.of the AAAI 31st Conference on Artificial Intelligence, 2016.
|
24 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1800-1807.
|
25 |
WANG N, YEUNG D Y. Learning a deep compact image representation for visual tracking[C]//Proc.of the 26th International Conference on Neural Information Processing Systems, 2013: 809-817.
|
26 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
|
27 |
PAN S J , YANG Q . A survey on transfer learning[J]. IEEE Trans.on Knowledge and Data Engineering, 2010, 22, 1345- 1359.
doi: 10.1109/TKDE.2009.191
|
28 |
WANG J D, CHEN Y Q, YU H, et al. Easy transfer learning by exploiting intra-domain structures[C]//Proc.of the IEEE International Conference on Multimedia and Expo, 2019: 1210-1215.
|
29 |
Cognitive Systems Laboratory, McMaster University, Canada. The IPIX radar database[EB/OL].[2020-06-11].http://soma.mcmaster.ca//ipix.php.
|