1 |
WEI K , FANG S L , TAO J . Variable scale relative entropy detection for non-cooperative underwater acoustic pulse signals[J]. IEEE Access, 2020, 8, 66131- 66138.
|
2 |
NAKAMURA K, HIRAKAWA Y, KAMEZAKI N, et al. Acoustic presence of finless porpoises around the Kansai international airport[C]//Proc.of the Technology Ocean, 2016: 342-345.
|
3 |
徐海珠, 袁延艺, 余赟, 等. 对抗航空反潜鱼雷关键技术研究[J]. 舰船科学技术, 2018, 40 (2): 131- 134.
|
|
XU H Z , YUAN Y Y , YU Y , et al. Key technical research of submarine against a aircraft torpedo[J]. Ship Science and Technology, 2018, 40 (2): 131- 134.
|
4 |
孟庆松, 王彬, 邵高平. α稳定分布噪声下水声线性调频信号的识别[J]. 系统工程与电子技术, 2018, 40 (7): 1449- 1456.
|
|
MENG Q S , WANG B , SHAO G P . Recognition of underwater acoustic linear frequency modulation signals in α stable distribution noise[J]. Systems Engineering and Electronics, 2018, 40 (7): 1449- 1456.
|
5 |
LI L, DU P. Research on modeling and testing technique of underwater noise stimulated by airborne source[C]//Proc.of the International Conference on Signal Processing, 2017.
|
6 |
GOMEZ-TEJEDOR J A , CASTRO-PALACIO J C , MONSORIU J A . The acoustic Doppler effect applied to the study of linear motions[J]. European Journal of Physics, 2014, 35 (2): 025006.
|
7 |
LINDGREN D , HENDEBY G , GUSTAFSSON F . Distributed localization using acoustic Doppler[J]. Signal Processing, 2015, 107, 43- 53.
|
8 |
TIMLELT H , REMRAM Y , BELOUCHRANI A . Closed-form solution to motion parameter estimation of an acoustic source exploiting Doppler effect[J]. Digital Signal Processing, 2017, 63, 35- 43.
|
9 |
STATMAN J I , RODEMICH E R . Parameter estimation based on Doppler frequency shifts[J]. IEEE Trans.on Aerospace & Electronic Systems, 2007, 23 (1): 31- 39.
|
10 |
XU L J, YANG Y X, YANG L. Localization of underwater tone noise sources using instantaneous frequency rate estimate[C]//Proc.of the Oceans-San Diego, 2013.
|
11 |
TIAN F, YANG Y X, XU L J. Doppler parameters estimation by short time chirp fourier transform[C]//Proc.of the International Conference on Signal Processing, Communications and Computing, 2011.
|
12 |
朱子尧, 韩树平, 郭正东, 等. 基于信标漂移误差识别的长基线定位算法[J]. 系统工程与电子技术, 2019, 41 (1): 162- 169.
|
|
ZHU Z Y , HAN S P , GUO Z D , et al. Long baseline location algorithm based on beacon drift error recognition[J]. Systems Engineering and Electronics, 2019, 41 (1): 162- 169.
|
13 |
金志刚, 冀智华, 苏毅珊. 基于深度可调节节点的水声网络部署优化算法[J]. 系统工程与电子技术, 2019, 41 (1): 208- 212.
|
|
JIN Z G , JI Z H , SU Y S . Deployment optimization algorithm using depth adjustable nodes in underwater acoustic networks[J]. Systems Engineering and Electronics, 2019, 41 (1): 208- 212.
|
14 |
唐帅, 笪良龙, 李玉阳, 等. 信号级水下作战实验复杂声纳系统仿真技术研究[J]. 系统工程与电子技术, 2018, 40 (7): 1646- 1653.
|
|
TANG S , DA L L , LI Y Y , et al. Research on signal-level simulation technology of underwater operational experiment complex sonar system[J]. Systems Engineering and Electronics, 2018, 40 (7): 1646- 1653.
|
15 |
YAN J , ZHANG X N , LUO X Y , et al. Asynchronous localization with mobility prediction for underwater acoustic sensor networks[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (3): 2543- 2556.
|
16 |
FERGUSON B G , SPEECHLEY G C . Acoustic detection and localization of a turboprop aircraft by an array of hydrophones towed below the sea surface[J]. IEEE Journal of Oceanic Engineering, 2009, 34 (1): 75- 82.
|
17 |
LO K W , FERGUSON B G . Flight parameter estimation using instantaneous frequency measurements from a wide aperture hydrophone array[J]. IEEE Journal of Oceanic Engineering, 2014, 39 (4): 607- 619.
|
18 |
BUCKINGHAM M J , GIDDENS E M , SIMONET F , et al. Propeller noise from a light aircraft for low-frequency measurements of the speed of sound in a marine sediment[J]. Journal of Computational Acoustics, 2002, 10 (4): 445- 464.
|
19 |
YAN H C , XU T , WANG P , et al. MEMS hydrophone signal denoising and baseline drift removal algorithm based on parameter-optimized variational mode decomposition and correlation coefficient[J]. Sensors, 2019, 19 (21): 4622.
|
20 |
ZHANG L S , XU Q D , ZHANG G J , et al. Design and fabrication of a multipurpose cilia cluster MEMS vector hydrophone[J]. Sensors and Actuators A: Physical, 2019, 296 (9): 331- 339.
|
21 |
URICK R J . Noise signature of an aircraft in level flight over a hydrophone in the sea[J]. The Journal of the Acoustical Society of America, 1972, 52 (3B): 993- 999.
|
22 |
CHAPMAN D M F , WARD P D . The normal-mode theory of air-to-water sound transmission in the ocean[J]. The Journal of the Acoustical Society of America, 1990, 87 (2): 601- 618.
|
23 |
CHAPMAN D M F , THOMSON D J , ELLIS D D . Modeling air-to-water sound transmission using standard numerical codes of underwater acoustics[J]. The Journal of the Acoustical Society of America, 1992, 91 (4): 1904- 1910.
|
24 |
PAUL D I . Acoustical radiation from a point source in the presence of two media[J]. The Journal of the Acoustical Society of America, 1957, 29 (10): 1102- 1109.
|
25 |
XU L J , YANG Y X . Parameter estimation of underwater moving sources by using matched Wigner transform[J]. Applied Acoustics, 2016, 101, 5- 14.
|
26 |
ZHANG Y P , MA Y L . Modeling the underwater acoustic field excited by an airborne rapidly moving source using wavenumber integration[J]. Journal of Northwestern Polytechnical University, 2007, (6): 100- 104.
|