系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (12): 2847-2858.doi: 10.3969/j.issn.1001-506X.2020.12.22
收稿日期:
2020-04-10
出版日期:
2020-12-01
发布日期:
2020-11-27
作者简介:
尹依伊(1995-),女,硕士研究生,主要研究方向为飞行力学、飞行器协同制导与控制。E-mail:基金资助:
Yiyi YIN1(), Xiaofang WANG1(), Zhen TIAN2(), Zhuping WANG3()
Received:
2020-04-10
Online:
2020-12-01
Published:
2020-11-27
摘要:
针对多导弹编队控制问题,设计了一种既能保证编队精度又能保证在队形形成或变换过程中避免弹间碰撞的编队控制器。首先,建立领弹和从弹相对运动模型,并变换为具有级联形式的编队控制模型。然后,通过合理设置性能函数参数,基于预设性能控制理论设计能够对编队跟踪误差的瞬态过程和稳态精度进行控制的编队控制器。最后,针对队形形成和变换过程中的弹间避碰问题,通过实时改变编队期望位置并结合预设性能控制器的特点,设计了主动避碰策略。仿真结果表明,采用所提的避碰策略和编队控制器,能够使得多枚导弹在避免碰撞的前提下形成良好的编队。
中图分类号:
尹依伊, 王晓芳, 田震, 王竹萍. 基于预设性能控制的多导弹编队方法[J]. 系统工程与电子技术, 2020, 42(12): 2847-2858.
Yiyi YIN, Xiaofang WANG, Zhen TIAN, Zhuping WANG. Multi-missile formation method based on prescribed performance control[J]. Systems Engineering and Electronics, 2020, 42(12): 2847-2858.
1 |
HUANG H Q , ZHUO T . Multi-model cooperative task assignment and path planning of multiple UCAV formation[J]. Multimedia Tools and Applications, 2019, 78 (1): 415- 436.
doi: 10.1007/s11042-017-4956-7 |
2 |
JIN X , HADDAD W M . An adaptive control architecture for leader-follower multiagent systems with stochastic disturbances and sensor and actuator attacks[J]. International Journal of Control, 2019, 92 (11): 2561- 2570.
doi: 10.1080/00207179.2018.1450524 |
3 |
SHEN D B , SUN W J , SUN Z D . Adaptive PID formation control of nonholonomic robots without leader's velocity information[J]. ISA Transactions, 2014, 53 (2): 474- 480.
doi: 10.1016/j.isatra.2013.12.010 |
4 | 马骏, 马清华, 王根, 等. 基于伪谱法的导弹编队队形重构最优控制[J]. 弹箭与制导学报, 2018, 38 (6): 95- 98. |
MA J , MA Q H , WANG G , et al. Optimal reconstruction control of missile formation based on pseudospectral method[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38 (6): 95- 98. | |
5 | 张磊, 方洋旺, 毛东辉, 等. 导弹协同攻击编队自适应滑模控制器设计[J]. 宇航学报, 2014, 35 (6): 700- 707. |
ZHANG L , FANG Y W , MAO D H . Adaptive sliding-mode controller design for missile cooperative engagement[J]. Journal of Astronautics, 2014, 35 (6): 700- 707. | |
6 |
JIA Z Y , WANG L L , YU J Q , et al. Distributed adaptive neural networks leader-following formation control for quadrotors with directed switching topologies[J]. ISA Transactions, 2019, 93, 93- 107.
doi: 10.1016/j.isatra.2019.02.030 |
7 |
DONG X W , LI Y F , LU C , et al. Time-varying formation tracking for UAV swarm systems with switching directed topo-logies[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (12): 3674- 3685.
doi: 10.1109/TNNLS.2018.2873063 |
8 |
DUAN H B , LUO Q N , YU Y X . Trophallaxis network control approach to formation flight of multiple unmanned aerial vehicles[J]. Science China(Technological Sciences), 2013, 56 (5): 1066- 1074.
doi: 10.1007/s11431-013-5199-0 |
9 | RAMAZANI S , SELMIC R , DE Q M . Multiagent layered formation control based on rigid graph theory[M]. Sarangapani Jagannathan: Control of Complex Systems, 2016. |
10 |
FABRIZIO G , MARIO I , MARCELLO N , et al. Dynamic and control issues of formation flight[J]. Aerospace Science and Technology, 2005, 9 (1): 65- 71.
doi: 10.1016/j.ast.2004.06.011 |
11 |
LUO Q N , DUAN H B . An improved artificial physics approach to multiple UAVs/UGVs heterogeneous coordination[J]. Science China(Technological Sciences), 2013, 56 (10): 2473- 2479.
doi: 10.1007/s11431-013-5314-2 |
12 | WEN G X , CHEN C L P , DOU H , et al. Formation control with obstacle avoidance of second-order multi-agent systems under directed communication topology[J]. Science China(Information Sciences), 2019, 62 (9): 144- 157. |
13 |
RIFQI R , DEA L A , ESTIYANTI E , et al. Leader-follower formation control of two quadrotor UAVs[J]. SN Applied Sciences, 2019, 1 (6): 539- 1.
doi: 10.1007/s42452-019-0551-z |
14 |
HU J W , WANG M , ZHAO C H , et al. Formation control and collision avoidance for multi-UAV systems based on Voronoi partition[J]. Science China Technological Sciences, 2020, 63 (1): 65- 72.
doi: 10.1007/s11431-018-9449-9 |
15 |
YUN B , CHEN B M , LUM K Y , et al. Design and implementation of a leader-follower cooperative control system for unmanned helicopters[J]. Journal of Control Theory and Applications, 2010, 8 (1): 61- 68.
doi: 10.1007/s11768-010-9188-6 |
16 |
EMANUELE L D A , FABRIZIO G , GIANLUCA R . Multirotor aircraft formation flight control with collision avoidance capability[J]. Aerospace Science and Technology, 2018, 77, 733- 741.
doi: 10.1016/j.ast.2018.04.002 |
17 | 张佳龙, 闫建国, 张普, 等. 基于改进人工势场的无人机编队避障控制研究[J]. 西安交通大学学报, 2018, 52 (11): 112- 119. |
ZHANG J L , YAN J G , ZHANG P , et al. Study on the collision avoidance of UAV cooperative formation with improved artificial potential field[J]. Journal of Xi'an Jiaotong University, 2018, 52 (11): 112- 119. | |
18 |
LIAO F , TEO R , WANG J L , et al. Distributed formation and reconfiguration control of VTOL UAVs[J]. IEEE Trans.on Control Systems Technology, 2017, 25 (1): 270- 277.
doi: 10.1109/TCST.2016.2547952 |
19 |
SHI Q , LI T S , LI J Q , et al. Adaptive leader-following formation control with collision avoidance for a class of second-order nonlinear multi-agent systems[J]. Neurocomputing, 2019, 350, 282- 290.
doi: 10.1016/j.neucom.2019.03.045 |
20 |
LIAO W , WEI X H , LAI J Z , et al. Formation control for multi-UAVs systems based on Kullback-Leibler divergence[J]. Transactions of the Institute of Measurement and Control, 2020, 42 (3): 598- 603.
doi: 10.1177/0142331219878581 |
21 | 李樾, 韩维, 陈清阳, 等. 基于快速扩展随机树算法的多无人机编队重构方法研究[J]. 西北工业大学学报, 2019, 37 (3): 601- 611. |
LI Y , HAN W , CHEN Q Y . Research on reconstruction method of multi-UAV formation based on rapid-expanding random tree algorithm[J]. Journal of Northwestern Polytechnical University, 2019, 37 (3): 601- 611. | |
22 | LIE F A P , GO T H . A collision-free formation reconfiguration control approach for unmanned aerial vehicles[J]. International Journal of Control Automation & Systems, 2010, 8 (5): 1100- 1107. |
23 | 胡云安, 张雷, 耿宝亮. 预设性能控制研究进展[J]. 海军航空工程学院学报, 2016, 31 (1): 1- 6, 50. |
HU Y A , ZHANG L , GENG B L . Research development of prescribed performance control[J]. Journal of Naval Aeronautical and Astronautical University, 2016, 31 (1): 1- 6, 50. | |
24 |
ZHANG C , MA G F , SUN Y C , et al. Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression[J]. Nonlinear Dynamics, 2019, 96 (3): 1909- 1926.
doi: 10.1007/s11071-019-04894-x |
25 |
JIA Z H , HU Z H , ZHANG W D . Adaptive output-feedback control with prescribed performance for trajectory tracking of underactuated surface vessels[J]. ISA Transactions, 2019, 95, 18- 26.
doi: 10.1016/j.isatra.2019.04.035 |
26 |
ZHANG Y , HUA C C , LI K . Disturbance observer-based fixed-time prescribed performance tracking control for robotic manipulator[J]. International Journal of Systems Science, 2019, 50 (13): 2437- 2448.
doi: 10.1080/00207721.2019.1622818 |
27 | 刘冬责.多导弹协同制导与控制技术研究[D].北京:北京理工大学, 2016. |
LIU D Z. Research on multi-missile cooperative guidance and control technology[D]. Beijing: Beijing Institute of Technology, 2016. | |
28 | MARANTOS P, EQTAMI A, BECHLIOULIS C P, et al. A Prescribed performance robust nonlinear model predictive control framework[C]//Proc.of the European Control Conference, 2014: 2182-2187. |
29 |
BU X W , WU X Y , ZHU F J , et al. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors[J]. ISA Transactions, 2015, 59, 149- 159.
doi: 10.1016/j.isatra.2015.09.007 |
30 | KURIKI Y , NAMERIKAWA T . Formation control with collision avoidance for a multi-UAV system using decentralized MPC and consensus-based control[J]. The Society of Instrument and Control Engineers, 2015, 8 (4): 285- 294. |
[1] | 孙田野, 孙伟, 吴建军. 改进Quatre算法的无人机编队快速集结方法[J]. 系统工程与电子技术, 2022, 44(9): 2840-2848. |
[2] | 徐星光, 王晓峰, 姚璐, 任章. 固定翼无人机编队构型与通信拓扑优化[J]. 系统工程与电子技术, 2022, 44(9): 2936-2946. |
[3] | 唐骁, 叶继坤, 李旭. 三维非线性预设性能制导律设计[J]. 系统工程与电子技术, 2022, 44(2): 619-627. |
[4] | 朱晓敏, 刘大千, 费博雯, 门通. 局部通信条件下多无人机协同搜索方法[J]. 系统工程与电子技术, 2022, 44(12): 3783-3791. |
[5] | 乔殿峰, 梁彦, 马超雄, 杨心语, 汪冕, 李建国. 多域作战下的群目标意图识别与预测[J]. 系统工程与电子技术, 2022, 44(11): 3403-3412. |
[6] | 蒋铁军, 于淳, 周成杰. 考虑期望体系效能衰减的舰艇编队等级修理计划优化[J]. 系统工程与电子技术, 2022, 44(11): 3571-3578. |
[7] | 符小卫, 陈子浩. 基于一致性协议的多无人机协同围捕控制方法[J]. 系统工程与电子技术, 2021, 43(9): 2501-2507. |
[8] | 张毅, 方国伟, 杨秀霞. 具有性能预设的多机编队目标跟踪控制[J]. 系统工程与电子技术, 2021, 43(4): 1069-1079. |
[9] | 张毅, 方国伟, 杨秀霞. 基于图Laplacian的多机编队目标跟踪方法[J]. 系统工程与电子技术, 2021, 43(3): 796-805. |
[10] | 严冰, 张进, 罗亚中. 面向编队卫星的空间系绳在轨服务[J]. 系统工程与电子技术, 2021, 43(3): 806-813. |
[11] | 权婉珍, 罗哲, 杨小冈, 韩心中, 席建祥. 间歇通信条件下多无人机保性能编队追踪控制[J]. 系统工程与电子技术, 2021, 43(11): 3288-3294. |
[12] | 符小卫, 陈子浩. 多无人机协同探测快速目标的控制方法设计[J]. 系统工程与电子技术, 2021, 43(11): 3295-3304. |
[13] | 熊振宇, 崔亚奇, 熊伟, 顾祥岐. 卫星与雷达位置数据自适应关联[J]. 系统工程与电子技术, 2021, 43(1): 91-98. |
[14] | 张洪海, 钱晓鹏, 吴鑫炜, 刘皞, 田宇, 王立超. 基于路径-速度解耦的无人机编队协同轨迹规划[J]. 系统工程与电子技术, 2020, 42(9): 1976-1987. |
[15] | 魏蓝, 李威, 单家元. 稀薄流区的多弹协同编队构型生成策略设计[J]. 系统工程与电子技术, 2020, 42(8): 1812-1819. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||