系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (12): 2833-2846.doi: 10.3969/j.issn.1001-506X.2020.12.21
邵天浩1(), 张宏军1(), 程恺1,*(), 戴成友2(), 余晓晗1(), 张可1()
收稿日期:
2020-03-01
出版日期:
2020-12-01
发布日期:
2020-11-27
通讯作者:
程恺
E-mail:605862558@qq.com;jsnjzhj@263.net;chengkai911@126.com;376679530@qq.com;yu_xiaohan@sina.cn;2387303531@qq.com
作者简介:
邵天浩(1996-),男,硕士研究生,主要研究方向为任务规划、智能控制。E-mail:基金资助:
Tianhao SHAO1(), Hongjun ZHANG1(), Kai CHENG1,*(), Chengyou DAI2(), Xiaohan YU1(), Ke ZHANG1()
Received:
2020-03-01
Online:
2020-12-01
Published:
2020-11-27
Contact:
Kai CHENG
E-mail:605862558@qq.com;jsnjzhj@263.net;chengkai911@126.com;376679530@qq.com;yu_xiaohan@sina.cn;2387303531@qq.com
摘要:
层次任务网络(hierarchical task network, HTN)作为智能规划技术的重要组成部分,已成功应用于无人平台任务规划、应急方案制定等各领域中。由于日益增加的不确定因素对计划执行效果的影响,迫切需要重新规划技术,因此基于HTN的重新规划技术成为近年来的研究热点。首先,通过对当前研究现状的总结梳理,提出了基于HTN的3层重新规划框架。然后,分别从框架中的计划修复、局部重规划和全局重规划3个层次阐述了相应的技术路线与实现细节,针对不同层次指出了目前方法的优势与不足。最后,对该问题未来的研究方向进行了展望,并提出了待解决的关键问题及解决思路。
中图分类号:
邵天浩, 张宏军, 程恺, 戴成友, 余晓晗, 张可. 层次任务网络中的重新规划研究综述[J]. 系统工程与电子技术, 2020, 42(12): 2833-2846.
Tianhao SHAO, Hongjun ZHANG, Kai CHENG, Chengyou DAI, Xiaohan YU, Ke ZHANG. Review of replanning in hierarchical task network[J]. Systems Engineering and Electronics, 2020, 42(12): 2833-2846.
1 | SACERDOTI E D. The nonlinear nature of plans[C]//Proc.of the International Joint Conference on Artificial Intelligence, 1975: 206-214. |
2 | 王红卫, 刘典, 赵鹏, 等. 不确定层次任务网络规划研究综述[J]. 自动化学报, 2016, 42 (5): 655- 667. |
WANG H W , LIU D , ZHAO P , et al. Review on hierarchical task network planning under uncertainty[J]. Acta Automatica Sinica, 2016, 42 (5): 655- 667. | |
3 |
YANG Q . Formalizing planning knowledge for hierarchical planning[J]. Computational Intelligence, 1990, 6 (1): 12- 24.
doi: 10.1111/j.1467-8640.1990.tb00126.x |
4 | KAMBHAMPATI S , HENDLER J A . A validation-structure-based theory of plan modification and reuse[J]. Artificial Intelligence, 1992, 55 (2/3): 193- 258. |
5 | EROL K, HENDLER J, NAU D. UMCP: a sound and complete procedure for hierarchical task-network planning[C]//Proc.of the International Conference on Artificial Intelligence Planning Systems, 1994: 249-254. |
6 | EROL K. Hierarchical task-network planning systems formalization, analysis, and implementation[D]. Maryland: University of Maryland, 1995. |
7 | NAU D , AU T C , ILGHAMI O , et al. SHOP2: an HTN planning system[J]. Journal of Artificial Intelligence Research, 2011, 20 (1): 379- 404. |
8 |
NAU D , AU T C , ILGHAMI O , et al. Applications of SHOP and SHOP2[J]. IEEE Intelligent Systems, 2005, 20 (2): 34- 41.
doi: 10.1109/MIS.2005.20 |
9 | ILGHAMI O. Documentation for JSHOP2[R]. Maryland: University of Maryland, 2006. |
10 | MUNOZ-AVILA H, AHA D W, NAU D, et al. SiN integrating case-based reasoning with task decomposition[C]//Proc.of the International Joint Conference on Artificial Intelligence, 2001: 999-1004. |
11 | WARFIELD I, HOGG C, LEE-URBAN S, et al. Adaptation of hierarchical task network plans[C]//Proc.of the International Florida Artificial Intelligence Research Society Confe-rence, 2007: 429-434. |
12 | FINE-MORRIS M, MUNOZ-AVILA H. Learning domain structure in HGNs for nondeterministic planning[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2019: 22-30. |
13 | AYAN N F, KUTER U, YAMAN F, et al. HOTRiDE: hie-rarchical ordered task replanning in dynamic environments[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2007: 31-36. |
14 | KUTER U, MILLER C. Computational mechanisms to support reporting of self confidence of automated/autonomous systems[C]//Proc.of the AAAI Fall Symposium Series: Self-Confidence in Autonomous Systems, 2015: 18-21. |
15 | GOPALAKRISHNAN S , MUNOZ-AVILA H , KUTER U . Learning task hierarchies using statistical semantics and goal reasoning[J]. AI Communication, 2016, 31 (2): 167- 180. |
16 | BEHNKE G, HOLLER D, BERCHER P. Hierarchical planning in the IPC[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2019: 6-14. |
17 | BEHNKE G, HOLLER D, BIUNDO S. Bringing order to chaos-a compact representation of partial order in SAT-based HTN planning[C]//Proc.of the Conference on Artificial Intelligence, 2019: 1562-1571. |
18 | BEHNKE G, HOLLER D, BIUNDO S. Finding optimal solutions in HTN planning-a SAT-based approach[C]//Proc.of the International Joint Conference on Artificial Intelligence, 2019: 20-28. |
19 | GEORGIEVSKI I , AIELLO M . Automated planning for ubiquitous computing[J]. ACM Computing Surveys, 2016, 49 (4): 1- 46. |
20 |
GEORGIEVSKI I , NGUYEN T A , NIZAMIC F , et al. Planning meets activity recognition: service coordination for intelligent buildings[J]. Pervasive and Mobile Computing, 2017, 38, 110- 139.
doi: 10.1016/j.pmcj.2017.02.008 |
21 | KALKSMA M, SETZ B, RIZKY P A, et al. Mining sequential patterns for appliance usage prediction[C]//Proc.of the International Conference on Smart Cities and Green ICT Systems, 2018: 23-33. |
22 | 王红卫, 祁超. 基于层次任务网络规划的应急响应决策理论与方法[M]. 北京: 科学出版社, 2015. |
WANG H W , QI C . Hierarchical task network planning based emergency response decision making theory and method[M]. Beijing: Science Press, 2015. | |
23 | 唐攀, 祁超, 王红卫. 基于层次任务网络规划的应急行动方案制定方法[J]. 管理评论, 2016, 28 (8): 43- 50. |
TANG P , QI C , WANG H W . Emergency response action plan development based on hierarchical task network planning[J]. Management Review, 2016, 28 (8): 43- 50. | |
24 | SUKTHANKAR G , GEIB C , BUI H H , et al. Plan, activity and intent recognition[M]. San Francisco: Morgan Kaufmann, 2014: 227- 249. |
25 |
ZHUO H H , KAMBHAMPATI S . Model-lite planning: case-based vs. model-based approaches[J]. Artificial Intelligence, 2017, 246, 1- 21.
doi: 10.1016/j.artint.2017.01.004 |
26 | TANG M, CAI J, ZHUO H H. Multi-matching network for multiple choice reading comprehension[C]//Proc.of the AAAI Conference on Artificial Intelligence, 2019: 7088-7095. |
27 | 张家铭, 刘忠, 石建迈, 等. 考虑飞行初段弹道交叉的多导弹协同发射时序规划方法[J]. 系统工程与电子技术, 2017, 39 (2): 316- 321. |
ZHANG J M , LIU Z , SHI J M , et al. Fire scheduling for multiple missiles cooperative engagement considering trajectory intersection during the initial flight phase[J]. Systems Engineering and Electronics, 2017, 39 (2): 316- 321. | |
28 | 张迎新, 陈超, 刘忠, 等. 资源不确定军事任务计划预测调度模型与算法[J]. 国防科技大学学报, 2013, 35 (3): 33- 38. |
ZHANG Y X , CHEN C , LIU Z , et al. Method for modeling and solving military mission planning with uncertain resource availability[J]. Jouranl of National University of Defense Technology, 2013, 35 (3): 33- 38. | |
29 | 罗旭辉, 刘忠, 张维明, 等. 层次任务网络的作战计划建模及生成技术[J]. 火力与指挥控制, 2009, 34 (12): 24- 28. |
LUO X H , LIU Z , ZHANG W M , et al. Research on mode-ling and generation of operational plan based on hierarchical task-network[J]. Fire Control & Command Control, 2009, 34 (12): 24- 28. | |
30 | 姜鑫, 杜正军, 王长春, 等. 不确定性环境下的多阶段军事对抗决策方法[J]. 系统工程理论与实践, 2013, 33 (8): 2163- 2168. |
JIANG X , DU Z J , WANG C C , et al. Method of multistage military conflict decision-making in uncertainty environments[J]. Systems Engineering-Therory & Practice, 2013, 33 (8): 2163- 2168. | |
31 | BIUNDO S, SCHATTENBERG B. From abstract crisis to concrete relief-a preliminary report on combining state abstraction and HTN planning[C]//Proc.of the European Conference on Planning, 2001: 157-168. |
32 | 曲源超.基于层次任务网络的军事计划优化方法研究[D].长沙:国防科学技术大学, 2010. |
QU Y C. Reseach on the method of military planning optimum based on hierarchical task network[D]. Changsha: National University of Defense Technology, 2010. | |
33 | XU X , JU R S , LIU X C , et al. Extending HTN to planning and execution control for small combat unit simulation[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2017, 8 (2): 1- 18. |
34 | 肖海, 刘新学, 舒健生, 等. 基于扩展HTN规划的作战任务分析方法[J]. 火力与指挥控制, 2016, 41 (9): 108- 111. |
XIAO H , LIU X X , SHU J S , et al. Research on operational task analysis method based on extended HTN planning[J]. Fire Control & Command Control, 2016, 41 (9): 108- 111. | |
35 | 耿松涛, 操新文, 李晓宁, 等. 基于扩展层级任务网络的联合作战电子对抗任务分解方法[J]. 装甲兵工程学院学报, 2018, 32 (5): 8- 13. |
GENG S T , CAO X W , LI X N , et al. Joint operations electronic countermeasures task decomposition method based on extended hierarchical task network[J]. Journal of Academy of Armored Force Engineering, 2018, 32 (5): 8- 13. | |
36 | 孙林, 焦鹏, 许凯. 基于改进分层任务网的指控行为模型[J]. 计算机科学, 2017, 44 (S1): 519- 522. |
SUN L , JIAO P , XU K . Command and control behavior model based on improved hierarchical task network[J]. Computer Science, 2017, 44 (S1): 519- 522. | |
37 | 汪鑫, 高岩, 陈逸, 等. 作战班组层次行为建模[J]. 计算机工程与应用, 2020, 56 (12): 250- 255. |
WANG X , GAO Y , CHEN Y , et al. Combat team's hierarchical behavior modeling[J]. Computer Engineering and Applications, 2020, 56 (12): 250- 255. | |
38 | LEE S M. Hierarchical planning knowledge for refining partial-order plans[D]. Commonwealth of Pennsylvania: Lehigh University, 2012. |
39 | GATEAU T, LESIRE C, BARBIER M. HiDDeN: cooperative plan execution and repair for heterogeneous robots in dynamic environments[C]//Proc.of the International Conference on Intelligent Robots and Systems, 2013: 4790-4795. |
40 | 宋沐民, 路飞, 陆娜, 等. 智能空间下基于分层任务网络的服务机器人任务规划[J]. 控制理论与应用, 2014, 31 (7): 83- 89. |
SONG M M , LU F , LU N , et al. Task planning for service robot with hierarchical task network in intelligent space[J]. Control Theory & Applications, 2014, 31 (7): 83- 89. | |
41 | 宋月.基于HTN的无人机任务规划的研究与仿真分析[D].北京:北京邮电大学, 2019. |
SONG Y. Reasearch and simulation analysis of task planning for UAV based on HTN[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. | |
42 |
SIRIN E , PARSIA B , WU D , et al. HTN planning for web service composition using SHOP2[J]. Web Semantics, 2004, 1 (4): 377- 396.
doi: 10.1016/j.websem.2004.06.005 |
43 | HRISTOSKOVA A, VOLCKAERT B, TURCK F D. Dyna-mic composition of semantically annotated web services through QoS-aware HTN planning algorithms[C]//Proc.of the International Conference on Internet and Web Applications and Ser-vices, 2009: 337-382. |
44 | 王喆, 王世昌, 李明磊, 等. 层次任务网络规划在应急物流方案制定中的应用研究[J]. 安全与环境工程, 2017, 24 (5): 15- 20. |
WANG Z , WANG S C , LI M L , et al. Research on application of HTN planning in emergency logistics program formulation[J]. Safety and Environmental Engineering, 2017, 24 (5): 15- 20. | |
45 | NAVEED M, KITCHIN D, CRAMPTON A. A hierarchical task network planner for pathfinding in real-time strategy games[C]//Proc.of the International Symposium on AI & Games, 2010. |
46 | VERWEIJ T. A hierarchically-layered multiplayer bot system for a first-person shooter[D]. Amsterdam: Vrije Universiteit of Amsterdam, 2007. |
47 |
ROBERTSON G , WATSON I . A review of real-time strategy game AI[J]. AI Magazine, 2014, 35 (4): 75- 104.
doi: 10.1609/aimag.v35i4.2478 |
48 | DONALDSON M J. Modeling dynamic tactical behaviors in COMBATXXI using hierarchical task networks[D]. Monte-rey: Naval Postgraduate School, 2014. |
49 | 罗文杰, 杨佩, 王皓, 等. FPS游戏中基于HTN的Anytime规划器的研究[J]. 计算机工程与应用, 2008, 44 (21): 92- 95. |
LUO W J , YANG P , WANG H , et al. Reasearch of HTN-based anytime planner in FPS games[J]. Computer Engineering and Applications, 2008, 44 (21): 92- 95. | |
50 | LAAVERI T. Integrating AI for turn-based 4X Strategy game[D]. Helsinki: University of Applied Sciences, 2017. |
51 |
LIN S , JIAO P , XU K , et al. Modified adversarial hierarchical task network planning in real-time strategy games[J]. Applied Sciences, 2017, 7 (9): 872- 895.
doi: 10.3390/app7090872 |
52 | SANCHEZ-GARZON I, FDEZ-OLIVARES J, CASTILLO L. A repair-replanning strategy for HTN-based therapy planning systems[C]//Proc.of the Conferencia De La Asociacion Espa-nola de Inteligencia Artificial, 2011. |
53 | SANCHEZ-GARZON I, FDEZ-OLIVARES J, CASTILLO L. Monitoring, repair and replanning techniques to support excepti-on handling in HTN-based therapy planning systems[C]//Proc.of the Conferencia De La Asociación Española de Inteligencia Artificial, 2011: 33-42. |
54 | FDEZ-OLIVARES J, SANCHEZ-GARZON I, GONZALEZ-FERRER A, et al. Task network based modeling, dynamic generation and adaptive execution of patient-tailored treatment plans based on smart process management technologies[C]//Proc.of the Knowledge Representation for Health Care, 2011: 37-50. |
55 | JIN L, DECHER K S, SCHMIDT C J. Bio-planner a plan adaptation approach for the discovery of biological pathways across species[C]//Proc.of the Innovative Applications of Aritificial Conference, 2009: 99-106. |
56 | HAYASHI H, CHO K, OHSUGA A. A new HTN planning framework for agents in dynamic environments[C]//Proc.of the International Workshop on Computational Logic in Multiagent Systems, 2004: 108-133. |
57 | MYERS K L . CPEF: a continuous planning and execution framework[J]. AI Magazine, 1999, 20 (4): 63- 69. |
58 | KROGT R V D, WEERDT M D. Plan repair as an extension of planning[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2005: 161-170. |
59 | OUALI L O, RICH C, SABOURET N. Plan recovery in reactive HTNs using symbolic planning[C]//Proc.of the International Conference on Artificial General Intelligence, 2015: 320-330. |
60 | XU X , YANG M , LI G . Adaptive CGF commander behavior mode-ling through HTN guided Monte Carlo tree search[J]. Journal of Systems Science and Systems Engineering, 2018, 27 (2): 231- 249. |
61 | BECHON P, BARBIER M, LESIRE C, et al. Using hybrid planning for plan reparation[C]//Proc.of the European Confe-rence on Mobile Robots, 2015. |
62 |
QI C , WANG D . Dynamic aircraft carrier flight deck task planning based on HTN[J]. IFAC Papersonline, 2016, 49 (12): 1608- 1613.
doi: 10.1016/j.ifacol.2016.07.810 |
63 | 曾素颖.动态环境下航母甲板任务规划方案修复与重规划方法研究[D].武汉:华中科技大学, 2017. |
ZENG S Y. Aircraft carrier deck task plan repair and replanning research under dynamic[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
64 | SOEMERS D J N J, WINANDS M H M. Hierarchical task network plan reuse for video games[C]//Proc.of the IEEE Conference on Computational Intelligence and Games, 2016: 78-84. |
65 | URO M. Adversarial hierarchical-task network planning for complex real-time games[C]//Proc.of the International Joint Conference on Artificial Intelligence, 2015: 1652-1658. |
66 | HOLLER D, BERCHER P, BEHNKE, et al. HTN plan repair using unmodified planning systems[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2018: 26-30. |
67 | TATE A. Generating project networks[C]//Proc.of the International Joint Conference on Artificial Intelligence, 1977: 888-893. |
68 | WILKINS D E . Domain-independent planning representation and plan generation[J]. Artificial Intelligence, 1984, 22 (3): 269- 301. |
69 |
WILKINS D E . Can AI planners solve practical problems[J]. Computational Intelligence, 1990, 6 (4): 232- 246.
doi: 10.1111/j.1467-8640.1990.tb00297.x |
70 | CURRIE K , TATE A . O-plan: the open planning architecture[J]. Artificial Intelligence, 1991, 52 (1): 49- 86. |
71 | TATE A , DRABBLE B , KIRBY R . O-plan2: an open architecture for command, planning and control[M]. San Francisco: Morgan kaufmann, 1994. |
72 |
GEORGIEVSKI I , AIELLO M . HTN planning: overview, comparison, and beyond[J]. Artificial Intelligence, 2015, 222, 124- 156.
doi: 10.1016/j.artint.2015.02.002 |
73 | HIATT L M. Probabilistic plan management[D]. Pittsburgh: Carnegie Mellon University, 2009. |
74 | 刘园园.水下机器人规划修复方法研究[D].哈尔滨:哈尔滨工程大学, 2014. |
LIU Y Y. Research on planning repair for autonomous underwater vehicle[D]. Harbin: Harbin Engineering University, 2014. | |
75 | BIDOT J, SCHATTENBERG B, BIUNDO S. Plan repair in hybrid planning[C]//Proc.of the German Conference on Artificial Intelligence, 2008: 169-176. |
76 | GOLDMAN R P, MARAIST J. Shopper a system for executing and simulating expressive plans[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2010: 230-233. |
77 | GHALLAB M , NAU D , TRAVERSO P . Automated planning and acting[M]. Cambridge: Cambridge University Press, 2016. |
78 |
ZUCKERMAN I , WILSON B , NAU D . Avoiding gametree pathology in two player adversarial search[J]. Computational Intelligence, 2018, 34 (2): 542- 561.
doi: 10.1111/coin.12162 |
79 | PATRA S , GHALLAB M , NAU D. , et al. APE: an acting and planning engine[J]. Cognitive Systems, 2019, 7, 175- 194. |
80 | NAU D, GHALLAB M, TRAVERSO P. Blended planning and acting: Preliminary approach, research challenges[C]//Proc.of the Conference on Artificial Intelligence, 2015: 4047-4051. |
81 | PATRA S, TRAVERSO P, GHALLAB M, et al. Planning and acting with hierarchical input/output automata[C]//Proc.of the International Conference on Automated Planning and Scheduling Workshop on Generalized Planning, 2017: 15-23. |
82 |
HASLUM P , IVANKOVIC F , RAMIREZ M , et al. Extending classical planning with state constraints: heuristics and search for optimal planning[J]. Journal of Artificial Intelligence Research, 2018, 62, 373- 431.
doi: 10.1613/jair.1.11213 |
83 | PATRA S, MASON J, KUMAR A, et al. Integrating acting, planning, and learning in hierarchical operational models[C]//Proc.of the 30th International Conference on Automated Planning and Scheduling, 2020. |
84 | PATRA S, GHALLAB M, NAU D. Interleaving acting and planning using operational models[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2019: 46-54. |
85 | 宋泾舸, 查建中, 陆一平. HTN规划中面向多计划生成的顺序任务分解算法[J]. 北京交通大学学报, 2009, 33 (4): 46- 49. |
SONG J G , ZHA J Z , LU Y P . Multiple plans oriented OTD algorithm for HTN planning[J]. Journal of Beijing Jiaotong University, 2009, 33 (4): 46- 49. | |
86 |
ZHANG W P , SHEN L C , CHEN J . Learning and fatigue inspired method for optimized HTN planning[J]. Journal of Systems Engineering and Electronics, 2012, 23 (2): 233- 241.
doi: 10.1109/JSEE.2012.00030 |
87 | HOLLER D, BEHNKE G, BERCHER P, et al. HDDL-a language to describe hierarchical planning problems[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2019: 6-14. |
88 | BERCHER P, BIUNDO S, GEIER T, et al. Plan, repair, exe-cute, explain-how planning helps to assemble your home theater[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2014: 386-394. |
89 | NEUFELD X, MOSTAGHIM S, PEREZ-LIEBANA D. HTN fighter: planning in a highly-dynamic game[C]//Proc.of the Computer Science and Electronic Engineering, 2017: 189-194. |
90 | GREA A, MATIGNON L, AKNINE S. HEART: hierarchical abstraction for real-time partial order causal link planning[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2018: 17-25. |
91 | HAYASHI H , TOKURA S , OZAKI F . Towards real-world HTN planning agents[J]. Knowledge Processing and Decision Making in Agent-Based Systems, 2009, 170, 13- 42. |
92 | MOLINEAUX M, KLENK M, AHA D W. Goal-driven autono-my in a navy strategy simulation[C]//Proc.of the Conference on Artificial Intelligence, 2010: 1548-1554. |
93 | GATEAU T, BARBIER M, LESIRECABANIOLS C. Local plan exertion and repair in a hierarchical structure of sub-teams of heterogeneous autonomous vehicles[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2010. |
94 | GATEAU T, SEVERAC G, LESIRE C. et al. Knowledge base for planning, execution and plan repair[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2012: 39-46. |
95 | 刘海涛.水下机器人任务规划与重规划技术研究[D].哈尔滨:哈尔滨工程大学, 2013. |
LIU H T. Research on mission planning and re-planning for AUV[D]. Harbin: Harbin Engineering University, 2013. | |
96 | BEHNKE G, HOLLER D, BERCHER P, et al. Change the plan-how hard can that be[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2016: 38-46. |
97 | 王晓晖.动态不确定环境下深空探测器自主任务规划方法研究[D].南京:南京航空航天大学, 2017. |
WANG X H. Study on autonomous mission planning technology for deep space explorer under dynamic uncertain environment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. | |
98 | PATRA S, GHALLAB M, NAU D, et al. Acting and planning using operational models[C]//Proc.of the Conference on Artificial Intelligence, 2019: 23-30. |
99 | LI M L , WANG H W , QI C . A novel HTN planning approach for handling disruption during plan execution[J]. Applied Intelligence, 2016, 46 (4): 1- 10. |
100 | ALFORD R. Search complexities for HTN planning[D]. Maryland: University of Maryland, 2016. |
101 |
CHENG K , WU L , YU X H , et al. Improving hierarchical task network planning performance by the use of domain-independent heuristic search[J]. Knowledge-Based Systems, 2018, 142, 117- 126.
doi: 10.1016/j.knosys.2017.11.031 |
102 | HOLLER D, BERCHER P, BEHNKE G, et al. On guiding search in HTN planning with classical planning heuristics[C]//Proc.of the International Joint Conference on Artificial Intelligence, 2019. |
103 | WINER D R, ROGELIO E, RIVERA C. A depth-balanced approach to decompositional planning for problems where hierarchical depth is reque[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2018. |
104 | BEHNKE G, HOLLER D, BERCHER P, et al. More succinct grounding of HTN planning problems-preliminary results[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2019: 40-48. |
105 | SZULYOVSZKY B. Reasoning over hierarchical task workflows in robust robot planning[D]. Austria: Management Center Innsbruck, 2015. |
106 | XIAO Z H, WAN H, ZHUO H H, et al. Learning HTN methods with preference from htn planning instance[C]//Proc.of the International Conference on Automated Planning and Scheduling, 2019: 31-39. |
[1] | 庞维建, 李辉, 黄谦, 李朋, 马贤明. 基于本体的无人系统任务规划研究综述[J]. 系统工程与电子技术, 2022, 44(3): 908-920. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||