1 |
REN Y , LI B , WANG H , et al. A novel cognitive jamming architecture for heterogeneous cognitive electronic warfare networks[M]. Singapore: Springer, 2020.
|
2 |
GUO Y Q , WU Y M , LIU H . Construction of waveform library in cognitive radar[J]. Polish Maritime Research, 2017, 24 (s2): 22- 29.
doi: 10.1515/pomr-2017-0060
|
3 |
KWON G , PARK J Y , HWANG K C . Design of a subarray configuration for multifunction radars using a nested optimization scheme[J]. Electromagnetics, 2016, 36 (4): 276- 285.
doi: 10.1080/02726343.2016.1158617
|
4 |
SAMEER A. Cognitive electronic warfare system[C]//Proc.of the Cognitive Radio Network, 2016.
|
5 |
DABCEVIC K , MUGHAL M O , MARCENARO L , et al. Cognitive radio as the facilitator for advanced communications electronic warfare solutions[J]. Journal ofa Signal Processing Systems, 2016, 83 (1): 29- 44.
|
6 |
DARPA. Behavioral learning for adaptive electronic warfare (BLADE) program homepage[EB/OL]. [2020-02-26]. http://www.darpa.mil.
|
7 |
AIR FORCE. Cognitive jammer[EB/OL]. [2020-02-26]. https://www.fbo.gov.
|
8 |
DARPA. Adaptive radar countermeasures (ARC) program homepage[EB/OL]. [2020-02-26]. http://www.darpa.mil.
|
9 |
邢强, 贾鑫, 朱卫纲, 等. 基于干扰方的雷达在线干扰效果评估[J]. 电子信息对抗技术, 2018, 33 (6): 57- 62.
|
|
XING Q , JIA X , ZHU W G , et al. Online jamming effect evaluation of radar based on jammer[J]. Electronic Information Countermeasures Technology, 2018, 33 (6): 57- 62.
|
10 |
安红, 杨莉, 高由兵, 等. 基于作战应用的相控阵雷达干扰效果评估方法初探[J]. 电子信息对抗技术, 2014, 29 (3): 42- 46.
|
|
AN H , YANG L , GAO Y B , et al. Preliminary exploration of the phased array radar jamming effect evaluation method based on combat application[J]. Electronic Information Countermea-sures Technology, 2014, 29 (3): 42- 46.
|
11 |
赵耀东, 徐旺. 一种基于雷达状态变化的干扰效果在线评估方法[J]. 电子信息对抗技术, 2016, 31 (3): 42- 46.
|
|
ZHAO Y D , XU W . An online method for evaluating jamming effect based on radar state change[J]. Electronic Information Countermeasures Technology, 2016, 31 (3): 42- 46.
|
12 |
翁鑫锦.基于机器学习的雷达干扰效能评估[D].成都:电子科技大学, 2019.
|
|
WENG X J. Evaluation of radar jamming effectiveness based on machine learning[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
|
13 |
ZHANG W , GAO Y B , ZHENG K . Radar working-state identification using the hidden Markov model[J]. The Journal of Engineering, 2019, 2019 (21): 7632- 7635.
doi: 10.1049/joe.2019.0649
|
14 |
CUI R, PAN J F, ZHU J. Research on jamming effect evaluation method of AN/TPY-2 radar using set pair approach degree[C]//Proc.of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing, 2019.
|
15 |
MARTINEZ D L , BRUSONI S . Cognitive flexibility and adaptive decision-making evidence from a laboratory study of expert decision makers[J]. Strategic Management Journal, 2018, 39 (4): 1031- 1058.
doi: 10.1002/smj.2774
|
16 |
ZHU M T , LI Y J , PAN Z S , et al. Automatic modulation recognition of compound signals using a deep multi-label classifier: a case study with radar jamming signals[J]. Signal Processing, 2020, 169, 107393.
doi: 10.1016/j.sigpro.2019.107393
|
17 |
YU H L , ZHANG J , ZHANG L R , et al. Polarimetric multiple-radar architectures with distributed antennas for discriminating between radar targets and deception jamming[J]. Digital Signal Processing, 2019, 90, 46- 53.
doi: 10.1016/j.dsp.2019.03.012
|
18 |
ZHOU B L , LI R F , LIU W J , et al. A BSS-based space-time multi-channel algorithm for complex-jamming suppression[J]. Digital Signal Processing, 2019, 87, 86- 103.
doi: 10.1016/j.dsp.2019.01.007
|
19 |
SHI J T , LIU X , YANG Y H , et al. Comments on "deceptive jamming suppression with frequency diverse MIMO radar"[J]. Signal Processing, 2019, 158, 1- 3.
doi: 10.1016/j.sigpro.2018.12.013
|
20 |
LI D D , WANG Z , CAO C J , et al. Information entropy based sample reduction for support vector data description[J]. Applied Soft Computing, 2018, 71, 1153- 1160.
doi: 10.1016/j.asoc.2018.02.053
|
21 |
THUY N N , WONGTHANAVASU S . On reduction of attri-butes in inconsistent decision tables based on information entropies and stripped quotient sets[J]. Expert Systems With Applications, 2019, 137, 308- 323.
doi: 10.1016/j.eswa.2019.06.071
|
22 |
DAI M F , SUN Y Q , SHAO S X , et al. Retraction note: modified box dimension and average weighted receiving time on the weighted fractal networks[J]. Scientific Reports, 2020, 10 (1): 6292.
doi: 10.1038/s41598-020-63244-9
|
23 |
AFYOUNI S , SMITH S M , NICHOLS T E . Effective degrees of freedom of the Pearson's correlation coefficient under autocorrelation[J]. Neuroimage, 2019, 199, 609- 625.
doi: 10.1016/j.neuroimage.2019.05.011
|
24 |
CHEN Y T , XIONG J , XU W H , et al. A novel online incremental and decremental learning algorithm based on variable support vector machine[J]. Cluster Computing, 2019, 22 (3): 7435- 7445.
|
25 |
SUN F F , XU P H , DING X M . Multi-core SVM optimized visual word package model for garment style classification[J]. Cluster Computing, 2018, 22 (4): 4141- 4147.
|
26 |
SKOLNIK M . Radar handbook[M]. 3rd ed New York: McGraw-Hill, 2008: 246- 252.
|
27 |
SHIEH C S , LIN C T . A vector neural network for emitter identification[J]. IEEE Trans.on Antennas & Propagation, 2002, 50 (8): 1120- 1127.
|