系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (12): 2716-2734.doi: 10.3969/j.issn.1001-506X.2020.12.07
张健丰(), 付耀文(), 张文鹏(), 杨威(), 黎涛()
收稿日期:
2020-04-17
出版日期:
2020-12-01
发布日期:
2020-11-27
作者简介:
张健丰(1990-),男,博士研究生,主要研究方向为雷达成像技术、雷达信号处理、微带天线技术。E-mail:基金资助:
Jianfeng ZHANG(), Yaowen FU(), Wenpeng ZHANG(), Wei YANG(), Tao LI()
Received:
2020-04-17
Online:
2020-12-01
Published:
2020-11-27
摘要:
圆迹合成孔径雷达(circular synthetic aperture radar, CSAR)由于具有亚波长量级的平面分辨率、三维成像潜力以及全方位观测能力等条带合成孔径雷达不可比拟的优势,在遥感测绘、灾害监测与评估、森林作物资源管理、战场目标侦察等领域具有广阔的应用前景。本文首先给出了CSAR的信号模型,并分析了其成像特点,然后较为全面地分别对国外和国内CSAR系统和试验的研究进展进行了综述,接着通过对CSAR成像算法、运动补偿、三维成像等成像技术现状的详细分析,总结归纳了CSAR成像技术当前仍然存在的问题,最后对CSAR成像技术进行了总结,并对CSAR未来发展进行了展望。
中图分类号:
张健丰, 付耀文, 张文鹏, 杨威, 黎涛. 圆迹合成孔径雷达成像技术综述[J]. 系统工程与电子技术, 2020, 42(12): 2716-2734.
Jianfeng ZHANG, Yaowen FU, Wenpeng ZHANG, Wei YANG, Tao LI. Review of CSAR imaging techniques[J]. Systems Engineering and Electronics, 2020, 42(12): 2716-2734.
表1
国外CSAR研究进展"
时间/年 | 研究单位 | 研究内容 | 研究结果 |
1996 | 美国纽约州立大学 | CSAR成像模式初步探索 | CSAR成像回波信号模型 |
1998 | 美国华盛顿大学 | CSAR分辨率分析 | CSAR具有三维高分辨成像潜力 |
2001 | 美国佐治亚理工学院雷达研究所 | E-CSAR成像系统转台实验 | 验证了CSAR成像原理 |
2004 | 瑞典国防研究局 | VHF波段CARABAS-II雷达系统CSAR机载实验 | CSAR可提高对地面目标的检测性能 |
2006 | AFRL | X波段全极化多航过CSAR机载试验 | CSAR具有高分辨成像、目标检测潜力 |
ONERA | X波段机载CSAR试验 | 验证了CSAR成像可行性 | |
2007 | ONERA | 多波段猎鹰-20机载CSAR试验 | 得到了数字高程模型, CSAR具有地形测绘潜力 |
2008 | DLR | E-SAR系统L波段全极化机载CSAR试验 | CSAR比条带SAR能获取更多的目标散射信息 |
2010 | 瑞典国防研究局 | VHF-UHF波段LORA系统机载CSAR实验 | 证实了CSAR的高检测性能 |
2012 | DLR | P波段、L波段全极化CSAR全息成像机载试验 | 验证了CSAR三维成像可行性 |
2013 | AFRL | 机载CSAR大场景成像实验 | 获得了尺寸为6 km×6 km的CSAR图像 |
ONERA | 步进频X波段RAMSES-NG系统机载CSAR试验 | 得到了飞机、汽车和卡车等目标的高分辨率图像 | |
2014 | DLR | 多输入多输出CSAR成像理论 | 多输入多输出CSAR有利于大场景高分辨成像 |
2015 | 土耳其Mersin大学 | 宽域CSAR成像实验 | CSAR三维成像过程中,目标与成像平面若不处于同一高度,将出现散焦 |
2017 | ONERA | 2 GHz信号带宽下的机载CSAR试验 | 获得了大带宽下的高分辨CSAR图像 |
2018 | 德国Ulm大学 | 多旋翼无人机载CSAR实验 | 验证了多旋翼无人机载CSAR成像的可行性 |
2019 | 德国Fraunhofer研究所 | W波机载FMCW CSAR成像试验 | W波段机载CSAR在对地高分辨观测中具有巨大潜力 |
表2
国内CSAR研究进展"
时间/年 | 研究单位 | 研究内容 | 研究结果 |
2006 | 北京航空航天大学 | 不同曲线合成孔径下的成像仿真实验 | 圆形轨迹SAR具有更好的成像效果 |
2007-2010 | IECAS | CSAR成像性能分析;三维成像能力研究;微波暗室内转台CSAR实验 | 星载平台、临近空间平台和机载平台等是实现CSAR的方向;初步验证了CSAR的实际可行性 |
2011 | IECAS | 全极化P波段CSAR机载试验 | CSAR比条带SAR能获取更精细的目标信息 |
2014 | IECAS | CSAR数据中提取建筑物轮廓信息以及估计建筑物所处地面高度的实验 | 得到了目标建筑物的轮廓信息,并将该成像平面高度确定为目标建筑物的地面高度 |
2015 | NUDT | Ku波段Mini-SAR轻型固定翼机载CSAR试验; P波段超宽带多基线CSAR机载实验 | 得到了固定翼无人机载CSAR高分辨图像;获取了多条轨迹CSAR数据 |
2017 | CETC No.38 | 线极化P波段机载CSAR试验CSAR三维图像重构实验 | CSAR比条带SAR在目标检测、识别、分类等方面更具优势目标车辆轮廓信息清晰,车辆尺寸估计精度较高 |
2018 | 西安电子科技大学 | CSAR数据场景目标数字高程模型提取实验 | CSAR能较精确地提取出观测场景中目标的数字高程模型 |
2018-2019 | NUDT | CSAR相干和非相干成像性能分析;毫米波FMCW CSAR成像性能分析; | 对于非各向同性目标,非相干成像可获取质量更好的图像; FMCW CSAR脉内平台连续运动会影响成像质量 |
2019 | IECAS | CSAR系统理论研究 | 得到了CSAR系统参数设计、成像区域选择以及方位模糊计算准则 |
2020 | 电子科技大学 | CSAR运动误差补偿技术研究 | 能补偿二维空变性的CSAR运动误差 |
1 |
DE W J J M , META A , HOOGEBOOM P . Modified range-Doppler processing for FM-CW synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3 (1): 83- 87.
doi: 10.1109/LGRS.2005.856700 |
2 | 王岩飞, 刘畅, 詹学丽, 等. 无人机载合成孔径雷达系统技术与应用[J]. 雷达学报, 2016, 5 (4): 333- 349. |
WANG Y F , LIU C , ZHAN X L , et al. Technology and applications of UAV synthetic aperture radar system[J]. Journal of Radars, 2016, 5 (4): 333- 349. | |
3 | 王辉, 赵凤军, 邓云凯. 毫米波合成孔径雷达的发展及其应用[J]. 红外与毫米波学报, 2015, 34 (4): 452- 459. |
WANG H , ZHAO F J , DENG Y K . Development and application of the millimeter wave SAR[J]. Journal of Infrared and Millimeter Waves, 2015, 34 (4): 452- 459. | |
4 | 吴越.圆周轨迹SAR三维成像算法研究与仿真[D].成都:电子科技大学, 2013. |
WU Y. Study on circular SAR 3-D imaging algorithm and simulation[D]. Chengdu: University of Electronic Science and Technology of China, 2013. | |
5 | WATANABE T , YAMADA H , TOKUTAKE Y , et al. Retrieval of polarimetric azimuthal angular characteristics via the application of target decomposition to spectral domain circular SAR images[J]. IEEE Trans.on Geoscience and Remote Sen-sing, 2018, 57 (5): 2963- 2982. |
6 |
WANG W Q , PENG Q C , CAI J Y . Waveform-diversity-based millimeter-wave UAV SAR remote sensing[J]. IEEE Trans.on Geoscience and Remote Sensing, 2009, 47 (3): 691- 700.
doi: 10.1109/TGRS.2008.2008720 |
7 | 马志娟, 谈璐璐, 盛磊. 多角度SAR成像模式设计及验证[J]. 空军预警学院学报, 2020, 34 (1): 11- 13, 17. |
MA Z J , TAN L L , SHENG L . Design and experiment of mul-tiaspect SAR imaging mode[J]. Journal of Air Force Early Warning Academy, 2020, 34 (1): 11- 13, 17. | |
8 | 冉达, 尹灿斌, 贾鑫. 多角度合成孔径雷达成像技术研究进展[J]. 装备学院学报, 2016, 27 (4): 86- 92. |
RAN D , YIN C B , JIA X . Research progress on multi-angle synthetic aperture radar imaging technology[J]. Journal of Equipment Academy, 2016, 27 (4): 86- 92. | |
9 | 周汉飞, 李禹, 粟毅. 利用多角度SAR数据实现三维成像[J]. 电子与信息学报, 2013, 35 (10): 2467- 2474. |
ZHOU H F , LI Y , SU Y . Three-dimensional imaging with multi-aspect SAR data[J]. Journal of Electronics and Information Technology, 2013, 35 (10): 2467- 2474. | |
10 | 周汉飞.多角度SAR成像及特征提取[D].长沙:国防科技大学, 2013. |
ZHOU H F. Multi-aspect SAR imaging and feature extraction[D]. Changsha: National University of Defense Technology, 2013. | |
11 |
SOUMEKH M . Reconnaissance with slant plane circular SAR imaging[J]. IEEE Trans.on Image Processing, 1996, 5 (8): 1252- 1265.
doi: 10.1109/83.506760 |
12 | SOUMEKH M . Synthetic aperture radar signal processing with Matlab algorithm[M]. New York: Wiley, 1999: 486- 539. |
13 |
YAN W , XU J D , WEI G , et al. A fast 3D imaging technique for near-field circular SAR processing[J]. Progress in Electromagnetics Research, 2012, 129, 271- 285.
doi: 10.2528/PIER12051704 |
14 | 洪文. 圆迹SAR成像技术研究进展[J]. 雷达学报, 2012, 1 (2): 124- 135. |
HONG W . Progress in circular SAR imaging technique[J]. Journal of Radars, 2012, 1 (2): 124- 135. | |
15 | 张祥坤.高分辨率圆迹合成孔径雷达成像机理及方法研究[D].北京:中国科学院研究生院, 2007. |
ZHANG X K. Study on imaging mechanism and algorithm of high-resolution circular synthetic aperture radar[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2007. | |
16 | DREUILLET P, CANTALLOUBE H, COLIN E, et al. The ONERA RAMSES SAR: latest significant results and future developments[C]//Proc.of the IEEE Conference on Radar, 2006: 518-524. |
17 | 贾高伟, 常文革. 圆周SAR与线性SAR成像特性分析与对比[J]. 国防科技大学学报, 2015, 37 (5): 161- 168. |
JIA G W , CHANG W G . Comparison and analysis of the imaging properties between circular SAR and linear SAR[J]. Journal of National University of Defense Technology, 2015, 37 (5): 161- 168. | |
18 | 保铮, 刑孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 123- 181. |
BAO Z , XING M D , WANG T . Radar imaging technology[M]. Beijing: Electronic Industry Press, 2005: 123- 181. | |
19 |
ZHANG J F , FU Y W , ZHANG W P , et al. Signal characteristics analysis and intra-pulse motion compensation for FMCW CSAR[J]. IEEE Sensors Journal, 2019, 19 (22): 10461- 10476.
doi: 10.1109/JSEN.2019.2929928 |
20 | 贾高伟.无人机载微型SAR高分辨成像技术研究[D].长沙:国防科技大学, 2015. |
JIA G W. Study on the high resolution imaging techniques for UAV airborne mini-SAR[D]. Changsha: National University of Defense Technology, 2015. | |
21 | 洪文, 王彦平, 林赟, 等. 新体制SAR三维成像技术研究进展[J]. 雷达学报, 2018, 7 (6): 633- 654. |
HONG W , WANG Y P , LIN Y , et al. Research progress on three-dimensional SAR imaging techniques[J]. Journal of Radars, 2018, 7 (6): 633- 654. | |
22 |
ISHIMARU A , CHAN T K , KUGA Y . An imaging technique using confocal circular synthetic aperture radar[J]. IEEE Trans.on Geoscience and Remote Sensing, 1998, 36 (5): 1524- 1530.
doi: 10.1109/36.718856 |
23 |
CHAN T K , KUGA Y , ISHIMARU A . Experimental studies on circular SAR imaging in clutter using angular correlation function technique[J]. IEEE Trans.on Geoscience and Remote Sensing, 1999, 37 (5): 2192- 2197.
doi: 10.1109/36.789616 |
24 |
BRYANT M L , GOSTIN L L , SOUMEKH M . 3-D E-CSAR imaging of a T-72 tank and synthesis of its SAR reconstructions[J]. IEEE Trans.on Aerospace and Electronic Systems, 2003, 39 (1): 211- 227.
doi: 10.1109/TAES.2003.1188905 |
25 | FROELIND P O, ULANDER L M H, GUSTAVSSON A. First results on VHF-band SAR imaging using circular tracks[C]//Proc.of the 7th European Conference on Synthetic Aperture Radar, 2008. |
26 | CANTALLOUBE H, COLIN E K. POLINSAR for FOPEN using flashlight mode images along circular trajectories[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2007: 1139-1142. |
27 | FROLIND P O , GUSTAVSSON A , LUNDBERG M , et al. Circular-aperture VHF-band synthetic aperture radar for detection of vehicles in forest concealment[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 50 (4): 1329- 1339. |
28 | AIR FORCE RESEARCH LABORATORY (AFRL). Large scene Gotcha data example[OL].[2020-03-15]. https://www.sdms.afrl.af.mil. |
29 |
ERTIN E , AUSTIN C D , SHARMA S , et al. GOTCHA experience report: three-dimensional SAR imaging with complete circular apertures[J]. Proceedings of SPIE, 2007, 6568, 656802.
doi: 10.1117/12.723245 |
30 |
AUSTIN C D , ERTIN E , MOSES R L . Sparse multipass 3D SAR imaging: applications to the GOTCHA data set[J]. Proceedings of SPIE, 2009, 7337, 733703.
doi: 10.1117/12.820323 |
31 | CANTALLOUBE H M J, KOENIGUER E C, ORIOT H. High resolution SAR imaging along circular trajectories[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2007: 850-853. |
32 | CANTALLOUBE H, KOENIGUER E C. Assessment of physical limitations of high resolution on targets at X-band from circular SAR experiments[C]//Proc.of the 7th European Conference on Synthetic Aperture Radar, 2008. |
33 | ORIOT H, CANTALLOUBE H. Circular SAR imagery for urban remote sensing[C]//Proc.of the 7th European Conference on Synthetic Aperture Radar, 2008. |
34 |
PALM S , ORIOT H M , CANTALLOUBE H M . Radargrammetric DEM extraction over urban area using circular SAR imagery[J]. IEEE Trans.on Geoscience and Remote Sensing, 2012, 50 (11): 4720- 4725.
doi: 10.1109/TGRS.2012.2191414 |
35 | PONCE O , PRATS-IRAOLA P , PINHEIRO M , et al. Fully polarimetric high-resolution 3-D imaging with circular SAR at L-band[J]. IEEE Trans.on Geoscience and Remote Sensing, 2013, 52 (6): 3074- 3090. |
36 | PONCE O, PRATS P, RODRIGUEZ-CASSOLA M, et al. Processing of circular SAR trajectories with fast factorized back-projection[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2011: 3692-3695. |
37 | 陈乐平.机载圆周合成孔径雷达成像技术研究[D].长沙:国防科技大学, 2018. |
CHEN L P. Research of airborne circular synthetic aperture radar imaging technique[D]. Changsha: National University of Defense Technology, 2018. | |
38 | FRÖLIND P O, ULANDER L M H, GUSTAVSSON A, et al. VHF/UHF-band SAR imaging using circular tracks[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2012: 7409-7411. |
39 | PONCE O , PRATS-IRAOLA P , SCHEIBER R , et al. Polarimetric 3-D reconstruction from multicircular SAR at P-band[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 11 (4): 803- 807. |
40 |
PONCE O , PRATS-IRAOLA P , SCHEIBER R , et al. First airborne demonstration of holographic SAR tomography with fully polarimetric multicircular acquisitions at L-band[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (10): 6170- 6196.
doi: 10.1109/TGRS.2016.2582959 |
41 | GORHAM L A. Large scene SAR image formation[D]. Fairborn: Wright State University, 2015. |
42 | DUPUIS X, MARTINEAU P. Very high resolution circular SAR imaging at X-band[C]//Proc.of the IEEE Geoscience and Remote Sensing Symposium, 2014: 930-933. |
43 | PONCE O, ROMMEL T, YOUNIS M, et al. Multiple-input multiple-output circular SAR[C]//Proc.of the 15th International Radar Symposium, 2014. |
44 |
DEMIRCI S , YIGIT E , OZDEMIR C . Wide-field circular SAR imaging: an empirical assessment of layover effects[J]. Microwave and Optical Technology Letters, 2015, 57 (2): 489- 497.
doi: 10.1002/mop.28884 |
45 | MARTINEAU P, ORIOT H, CANTALLOUBE H, et al. RAMSES-NG X-band UHR capability[C]//Proc.of the 12th European Conference on Synthetic Aperture Radar, 2018. |
46 | SCHARTEL M, PRAKASAN K, HVGLER P, et al. A multicopter-based focusing method for ground penetrating synthetic aperture radars[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 5420-5423. |
47 |
PALM S , SOMMER R , JANSSEN D , et al. Airborne circular W-Band SAR for multiple aspect urban site monitoring[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (9): 6996- 7016.
doi: 10.1109/TGRS.2019.2909949 |
48 | 唐智, 李景文, 周荫清, 等. 曲线合成孔径雷达信号模型与孔径形状研究[J]. 系统工程与电子技术, 2006, 28 (8): 1115- 1119. |
TANG Z , LI J W , ZHOU Y Q , et al. Study on aperture shape in curvilinear synthetic aperture radar[J]. Systems Engineering and Electronics, 2006, 28 (8): 1115- 1119. | |
49 | LIN Y, HONG W, TAN W X, et al. Compressed sensing technique for circular SAR imaging[C]//Proc.of the IET International Radar Conference, 2009. |
50 | 林赟, 谭维贤, 洪文, 等. 圆迹SAR极坐标格式算法研究[J]. 电子与信息学报, 2010, 32 (12): 2802- 2807. |
LIN Y , TAN W X , HONG W , et al. Polar format algorithm for circular synthetic aperture radar[J]. Journal of Electronics and Information Technology, 2010, 32 (12): 2802- 2807. | |
51 | WANG Y P, LIN Y, TAN W X, et al. Polar format algorithm for circular SAR[C]//Proc.of the 8th European Conference on Synthetic Aperture Radar, 2010. |
52 | LIN Y, HONG W, TAN W X, et al. Airborne circular SAR imaging: Results at P-band[C]//Proc.of the IEEE International Geoscience and remote Sensing Symposium, 2012: 5594-5597. |
53 | 刘燕, 谭维贤, 林赟, 等. 基于圆迹SAR的建筑物轮廓信息提取[J]. 电子与信息学报, 2015, 37 (4): 946- 952. |
LIU Y , TAN W X , LIN Y , et al. An approach of the outlines extraction of building footprints from the circular SAR data[J]. Journal of Electronics and Information Technology, 2015, 37 (4): 946- 952. | |
54 |
CHEN L P , AN D X , HUANG X T . Resolution analysis of circular synthetic aperture radar noncoherent imaging[J]. IEEE Trans.on Instrumentation and Measurement, 2020, 69 (1): 231- 240.
doi: 10.1109/TIM.2019.2890932 |
55 | 张佳佳, 姚佰栋, 孙龙, 等. 低频圆周SAR系统设计与试验验证[J]. 电子技术与软件工程, 2017, 15, 111- 113. |
ZHANG J J , YAO B D , SUN L , et al. Design and experimental verification of low frequency circular SAR system[J]. Electronic Technology and Software Engineering, 2017, 15, 111- 113. | |
56 | 张金强, 索志勇, 李真芳, 等. 圆迹SAR子孔径图像序列联合相关DEM提取方法[J]. 系统工程与电子技术, 2018, 40 (9): 1939- 1944. |
ZHANG J Q , SUO Z Y , LI Z F , et al. Joint cross-correction DEM extraction method for CSAR subaperture image sequences[J]. Systems Engineering and Electronics, 2018, 40 (9): 1939- 1944. | |
57 |
DU B , QIU X L , HUANG L J , et al. Analysis of the azimuth ambiguity and imaging area restriction for circular SAR based on the back-projection algorithm[J]. Sensors, 2019, 19, 4920.
doi: 10.3390/s19224920 |
58 |
ZUO F , MIN R , DENG X B , et al. A novel motion compensation method based on height term removing for spotlight SAR on circular trajectories[J]. IEEE Sensors Journal, 2020, 20 (5): 2424- 2433.
doi: 10.1109/JSEN.2019.2952742 |
59 | 查鹏.圆迹SAR快速高精度极坐标格式成像算法研究[D].上海:上海交通大学, 2015. |
ZHA P. Research on fast and high precision circular SAR polar format imaging algorithm[D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
60 | 宋德鹏, 李斌兵, 曲毅. 基于子孔径的FMCW CSAR快速圆卷积成像算法[J]. 电光与控制, 2019, 26 (7): 15- 19, 24. |
SONG D P , LI B B , QU Y . FMCW CSAR fast circular convolution imaging algorithm based on sub-aperture[J]. Electronics Optics and Control, 2019, 26 (7): 15- 19, 24. | |
61 | 阚学超, 李银伟, 王海涛, 等. 一种新的圆迹SAR快速后向投影算法[J]. 制导与引信, 2018, 39 (4): 10- 14, 53. |
KAN X C , LI Y W , WANG H T , et al. A new algorithm of fast back projection in circular SAR[J]. Guidance and Fuze, 2018, 39 (4): 10- 14, 53. | |
62 | 王保平, 马健钧, 张研, 等. 基于最小能量准则的参数估计圆周SAR三维成像方法[J]. 红外与激光工程, 2019, 48 (7): 0726001. |
WANG B P , MA J J , ZHANG Y , et al. Parameter estimation of circular SAR 3-D imaging method based on the minimum energy criterion[J]. Infrared and Laser Engineering, 2019, 48 (7): 0726001. | |
63 | 陈海文.基于波数域的圆周SAR三维成像算法研究[D].哈尔滨:哈尔滨工业大学, 2015. |
CHEN H W. Research of circular CSAR three-dimensional imaging algorithm based on wavenumber domain[D]. Harbin: Harbin Institute of Technology, 2015. | |
64 | 田甲申.圆周SAR成像算法及相关技术研究[D].成都:电子科技大学, 2013. |
TIAN J S. Study on image formation for circular SAR and related technologies[D]. Chengdu: University of Electronic Science and Technology of China, 2013. | |
65 | JIA G W , BUCHROITHNER M F , CHANG W G , et al. Fourier-based 2-D imaging algorithm for circular synthetic aperture radar: analysis and application[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 9 (1): 475- 489. |
66 |
SHI J , MA L , ZHANG X L . Streaming BP for non-linear motion compensation SAR imaging based on GPU[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6 (4): 2035- 2050.
doi: 10.1109/JSTARS.2013.2238891 |
67 | 陈乐平, 安道祥, 黄晓涛. 圆周合成孔径雷达的快速时域成像算法[J]. 国防科技大学学报, 2018, 40 (2): 77- 84. |
CHEN L P , AN D X , HUANG X T . Fast time-domain imaging algorithm for circular synthetic aperture radar[J]. Journal of National University of Defense Technology, 2018, 40 (2): 77- 84. | |
68 |
JIA G W , CHANG W G , ZHANG Q L , et al. The analysis and realization of motion compensation for circular synthetic aperture radar data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9 (7): 3060- 3071.
doi: 10.1109/JSTARS.2016.2553051 |
69 |
ÇETIN M , KARL W C . Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization[J]. IEEE Trans.on Image Processing, 2001, 10 (4): 623- 631.
doi: 10.1109/83.913596 |
70 | LIU T , PI Y M , YANG X . Wide-angle CSAR imaging based on the adaptive subaperture partition method in the terahertz band[J]. IEEE Trans.on Terahertz Science and Technology, 2017, 8 (2): 165- 173. |
71 | AN D X , LI Y H , HUANG X T , et al. Performance evaluation of frequency-domain algorithms for chirped low frequency UWB SAR data processing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 7 (2): 678- 690. |
72 | LI Y, LIN Y, HONG W, et al. Anisotropic scattering detection for characterizing polarimetric circular SAR multi-aspect signatures[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 4543-4546. |
73 | 贾高伟, 常文革. FMCW SAR运动补偿处理技术研究[J]. 电子学报, 2013, 41 (9): 1665- 1671. |
JIA G W , CHANG W G . Analysis of motion compensation for FMCW synthetic aperture radar[J]. Acta Electronic Science, 2013, 41 (9): 1665- 1671. | |
74 | 周芳, 孙光才, 吴玉峰, 等. 圆迹SAR运动误差分析及补偿技术[J]. 系统工程与电子技术, 2013, 35 (5): 948- 955. |
ZHOU F , SUN G C , WU Y F , et al. Motion error analysis and compensation techniques for circular SAR[J]. Systems Engineering and Electronics, 2013, 35 (5): 948- 955. | |
75 | 杨磊.高分辨/宽测绘带SAR成像及运动补偿算法研究[D].西安:西安电子科技大学, 2012. |
YANG L. Study on high resolution/wide swath SAR imagery and motion compensation algorithm[D]. Xian: Xidian University, 2012. | |
76 |
WAHL D E , EICHEL P H , GHIGLIA D C , et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Trans.on Aerospace and Electronic Systems, 1994, 30 (3): 827- 835.
doi: 10.1109/7.303752 |
77 | 罗雨潇.圆周合成孔径雷达自聚焦算法研究[D].长沙:国防科技大学, 2016. |
LUO Y X. Study on the autofocus algorithm for circular SAR[D]. Changsha: National University of Defense Technology, 2016. | |
78 |
CHEN L P , AN D X , HUANG X T . A backprojection-based imaging for circular synthetic aperture radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (8): 3547- 3555.
doi: 10.1109/JSTARS.2017.2683497 |
79 |
HU R Z , LI X L , YEO T S , et al. Refocusing and zoom-in polar format algorithm for curvilinear spotlight SAR imaging on arbitrary region of interest[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (10): 7995- 8010.
doi: 10.1109/TGRS.2019.2917717 |
80 | 郭振宇, 林赟, 洪文. 一种基于图像域相位误差估计的圆迹SAR聚焦算法[J]. 雷达学报, 2015, 4 (6): 681- 688. |
GUO Z Y , LIN Y , HONG W . A focusing algorithm for circular SAR based on phase error estimation in image domain[J]. Journal of Radars, 2015, 4 (6): 681- 688. | |
81 | 郭振宇, 林赟, 洪文, 等. 基于定标器相位梯度提取的圆迹SAR轨迹重建方法[J]. 电子与信息学报, 2015, 37 (8): 1836- 1842. |
GUO Z Y , LIN Y , HONG W , et al. Circular SAR trajectory reconstruction based on phase gradient of calibrators[J]. Journal of Electronics and Information Technology, 2015, 37 (8): 1836- 1842. | |
82 | PONCE O, PRATS P, SCHEIBER R, et al. Study of the 3-D impulse response function of holographic SAR tomography with multicircular acquisitions[C]//Proc.of the 10th European Conference on Synthetic Aperture Radar, 2014. |
83 | ZHANG B , PI Y M , MIN R . A CGRT-CLEAN method for circular SAR three dimensional imaging[M]. New York: Springer, 2012. |
84 | 吴雄峰, 王彦平, 吴一戎, 等. 圆周合成孔径雷达投影共焦三维成像算法[J]. 系统工程与电子技术, 2008, 30 (10): 1874- 1878, 1933. |
WU X F , WANG Y P , WU Y R , et al. Projected confocal 3-D imaging algorithm for circular SAR[J]. Systems Engineering and Electronics, 2008, 30 (10): 1874- 1878, 1933. | |
85 |
FEAR E C , LI X , HAGNESS S C , et al. Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions[J]. IEEE Trans.on Biomedical Engineering, 2002, 49 (8): 812- 822.
doi: 10.1109/TBME.2002.800759 |
86 | CHEN L P , AN D X , HUANG X T , et al. A 3D reconstruction strategy of vehicle outline based on single-pass single-polarization CSAR data[J]. IEEE Trans.on Image Processing, 2017, 26 (11): 5545- 5554. |
87 |
FENG D , AN D X , HUANG X T , et al. A phase calibration method based on phase gradient autofocus for airborne holographic SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (12): 1864- 1868.
doi: 10.1109/LGRS.2019.2911932 |
88 | 谢建志, 张晓玲, 田甲申, 等. 基于BP和CS相结合的圆周SAR三维成像算法[J]. 电讯技术, 2013, 53 (7): 849- 853. |
XIE J Z , ZHANG X L , TIAN J S , et al. Three-dimensional imaging algorithm for circular SAR based on combination of BP and CS[J]. Telecommunication Engineering, 2013, 53 (7): 849- 853. | |
89 | FENG D, AN D X, HUANG X T, et al. Holographic SAR tomographic processing of the multicircular data[C]//Proc.of the Asia-Pacific Microwave Conference, 2018: 830-832. |
90 | WANG W , AN D X , LUO Y X , et al. The fundamental trajectory reconstruction results of ground moving target from single-channel CSAR geometry[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (10): 5647- 5657. |
[1] | 苗添, 曾虹程, 王贺, 陈杰. 基于迭代阈值分割的星载SAR洪水区域快速提取[J]. 系统工程与电子技术, 2022, 44(9): 2760-2768. |
[2] | 王彩云, 吴钇达, 王佳宁, 马璐, 赵焕玥. 基于改进的CNN和数据增强的SAR目标识别[J]. 系统工程与电子技术, 2022, 44(8): 2483-2487. |
[3] | 傅东宁, 廖桂生, 黄岩, 张邦杰, 王幸. 基于图拉普拉斯嵌入的合成孔径雷达时变窄带干扰抑制算法[J]. 系统工程与电子技术, 2022, 44(6): 1846-1853. |
[4] | 盖明慧, 张苏, 孙卫天, 倪育德, 杨磊. 复数兼容全变分SAR目标结构特征增强[J]. 系统工程与电子技术, 2022, 44(6): 1862-1872. |
[5] | 徐安林, 张毓, 周峰. 基于Beta过程的高分辨ISAR成像[J]. 系统工程与电子技术, 2022, 44(6): 1873-1879. |
[6] | 纪朋徽, 代大海, 邢世其, 冯德军. 密集虚假运动目标生成方法[J]. 系统工程与电子技术, 2022, 44(5): 1502-1511. |
[7] | 刘丰恺, 黄大荣, 郭新荣, 冯存前. 基于吕氏分布的机动目标参数化平动补偿方法[J]. 系统工程与电子技术, 2022, 44(4): 1166-1173. |
[8] | 胡艳芳, 陈伯孝, 吴传章. 基于单脉冲三维成像的抗交叉眼干扰方法[J]. 系统工程与电子技术, 2022, 44(4): 1188-1194. |
[9] | 陈冬, 句彦伟. 基于语义分割实现的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(4): 1195-1201. |
[10] | 周晓玲, 张朝霞, 鲁雅, 王倩, 王琨琨. 基于改进R-FCN的SAR图像识别[J]. 系统工程与电子技术, 2022, 44(4): 1202-1209. |
[11] | 杨磊, 张苏, 盖明慧, 方澄. 高分辨SAR目标成像方向性结构特征增强[J]. 系统工程与电子技术, 2022, 44(3): 808-818. |
[12] | 王俊杰, 冯德军, 胡卫东. 基于时变材料的合成孔径雷达图像二维调制方法[J]. 系统工程与电子技术, 2022, 44(2): 455-462. |
[13] | 方澄, 李慧娟, 路稳, 宋玉蒙, 杨磊. 基于形态学自适应分块的高分辨SAR多特征增强算法[J]. 系统工程与电子技术, 2022, 44(2): 470-479. |
[14] | 雷禹, 冷祥光, 周晓艳, 孙忠镇, 计科峰. 基于改进ResNet网络的复数SAR图像舰船目标识别方法[J]. 系统工程与电子技术, 2022, 44(12): 3652-3660. |
[15] | 贾晓雅, 汪洪桥, 杨亚聃, 崔忠马, 熊斌. 基于YOLO框架的无锚框SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(12): 3703-3709. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||