1 |
DONOHO D L . Compressive sensing[J]. IEEE Trans.on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582
|
2 |
JACQUES L . Error decay of (almost) consistent signal estimations from quantized Gaussian random projections[J]. IEEE Trans.on Information Theory, 2014, 62 (8): 4696- 4709.
|
3 |
WANG A, SONG C, XU W. A configurable quantized compressed sensing architecture for low-power tele-monitoring[C]//Proc.of the International Green Computing Conference, 2014.
|
4 |
WANG H T, GHOSH S, LEON-SALAS W D. Compressive sensing recovery from non-ideally quantized measurements[C]//Proc.of the IEEE International Symposium on Circuits and Systems, 2013: 1368-1371.
|
5 |
BOUFOUNOS P T, BARANIUS R G. 1-bit compressive sen-sing[C]//Proc.of the 42nd Annual Conference on Information Sciences and Systems, 2008: 16-21.
|
6 |
ZHOU C B , ZHANG Z D , LIU F L , et al. Gridless compressive sensing method for line spectral estimation from 1-bit measurements[J]. Digital Signal Processing, 2017, 60, 152- 162.
doi: 10.1016/j.dsp.2016.09.003
|
7 |
KUNDSON K , SAAB R , WARD R . One-bit compressive sen-sing with norm estimation[J]. IEEE Trans.on Information Theory, 2016, 62 (5): 2748- 2758.
doi: 10.1109/TIT.2016.2527637
|
8 |
LASKA J N , BARANIUK R . Regime change: bit-depth versus measurement-rate in compressive sensing[J]. IEEE Trans.on Signal Processing, 2012, 60 (7): 3496- 3505.
doi: 10.1109/TSP.2012.2194710
|
9 |
JACQUES L , LASKA J N , BOUFOUNOS P T , et al. Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors[J]. IEEE Trans.on Information Theory, 2011, 59 (4): 2082- 2102.
|
10 |
ZHOU C , ZHANG Z , LIU F . Robust 1-bit compressive sen-sing via variational Bayesian algorithm[J]. Digital Signal Processing, 2016, 50, 84- 92.
doi: 10.1016/j.dsp.2015.12.006
|
11 |
FANG J , SHEN Y , LI H , et al. Sparse signal recovery from one-bit quantized data: an iterative reweighted algorithm[J]. Signal Processing, 2014, 102 (9): 201- 206.
|
12 |
ZHOU H F , HUANG L , LI J . Compressive sampling for spectrally sparse signal recovery via one-bit random demodulator[J]. Digital Signal Processing, 2018, 81, 1- 7.
doi: 10.1016/j.dsp.2018.04.014
|
13 |
HUANG X L , YANG H Y , HUANG Y X , et al. Robust mixed one-bit compressive sensing[J]. Signal Processing, 2019, 162 (9): 161- 168.
|
14 |
MENG X M , WU S , ZHU J . A unified Bayesian inference framework for generalized linear models[J]. IEEE Signal Processing Letters, 2018, 25 (3): 398- 402.
|
15 |
GIAMPOURAS P V , RONTOGIANNIS A A , THEMELIS K E , et al. Online sparse and low-rank subspace learning from incomplete data: a Bayesian view[J]. Signal Processing, 2017, 137 (8): 199- 212.
|
16 |
WIPF D P , RAO B D . Sparse Bayesian learning for basis selection[J]. IEEE Trans.on Signal Processing, 2004, 52 (8): 2153- 2164.
doi: 10.1109/TSP.2004.831016
|
17 |
TIPPING M E . Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1 (3): 211- 244.
|
18 |
LI F , FANG J , LI H , et al. Robust one-bit Bayesian compressive sensing with sign-flip errors[J]. IEEE Signal Processing Letters, 2015, 22 (7): 857- 861.
doi: 10.1109/LSP.2014.2373380
|
19 |
XACUR O A Q , GARRIDO J . Bayesian credibility for GLMs[J]. Insurance: Mathematics and Economics, 2018, 83 (11): 180- 189.
|
20 |
MENG X M , ZHU J . A generalized sparse Bayesian learning algorithm for one-bit DOA estimation[J]. IEEE Communications Letters, 2018, 22 (7): 1414- 1417.
doi: 10.1109/LCOMM.2018.2834904
|
21 |
LIU H F , PENG J . Sparse signal recovery via alternating projection method[J]. Signal Processing, 2018, 143 (2): 161- 170.
|
22 |
FANG J N , SHEN Y P , LI H , et al. Pattern-coupled sparse Bayesian learning for recovery of block-sparse signals[J]. IEEE Trans.on Signal Processing, 2015, 63 (2): 360- 372.
|
23 |
KAMILOV U S , BOURQUARD A , AMINI A , et al. One-bit measurements with adaptive thresholds[J]. IEEE Signal Processing Letters, 2012, 19 (10): 607- 610.
doi: 10.1109/LSP.2012.2209640
|
24 |
FANG J , SHEN Y N , YANG L X , et al. Adaptive one-bit quantization for compressive sensing[J]. Signal Processing, 2016, 125 (8): 145- 155.
|
25 |
司菁菁, 许培, 程银波. 自适应阈值的1-bit压缩感知算法[J]. 高技术通讯(中文), 2019, 29 (2): 134- 141.
|
|
SI J J , XU P , CHENG Y B . 1-bit compressive sensing algorithm with adaptive thresholding[J]. High Technology Letters (Chinese), 2019, 29 (2): 134- 141.
|
26 |
BERROU C , GLAVIEUX A . Next optimum error correcting coding and decoding: turbo-codes[J]. IEEE Trans.on Communication, 1996, 44 (10): 1261- 1271.
doi: 10.1109/26.539767
|
27 |
BOUCHOT J L , FOUCART S , HITCZENKO P . Hard thresholding pursuit algorithms: number of iterations[J]. Applied and Computational Harmonic Analysis, 2016, 41 (2): 412- 435.
doi: 10.1016/j.acha.2016.03.002
|
28 |
NEMATOLLAH Z , FAROKH M . Sparse and low-rank reco-very using adaptive thresholding[J]. Digital Signal Processing, 2018, 73 (2): 145- 152.
|