1 |
WARD J. Space-time adaptive processing for airborne radar[R]. Lexington, MA: Lincoln Laboratory, 1994.
|
2 |
KLEMM R . Principles of space-time adaptive processing[M]. London: the Institution of Electrical Engineers, 2002.
|
3 |
REED I S , MALLET J D , BRENNAN L E . Rapid convergence rate in adaptive arrays[J]. IEEE Trans.on Aerospace and Electronic Systems, 1974, 10 (4): 853- 863.
|
4 |
KREYENKAMP O , KLEMM R . Doppler compensation in forward-looking STAP[J]. IEE Proceedings on Radar, Sonar and Navigation, 2001, 148 (5): 253- 258.
doi: 10.1049/ip-rsn:20010557
|
5 |
HIMED B, ZHANG Y, HAJJARI A. STAP with angle-Doppler compensation for bistatic airborne radars[C]//Proc.of the IEEE National Radar Conference, 2002: 22-25
|
6 |
JAFFER A G, HO P T, HIMED B. Adaptive compensation for conformal array STAP by configuration parameter estimation[C]//Proc.of the IEEE National Radar Conference, 2006: 24-27.
|
7 |
王娟, 王彤, 吴建新. 非正侧阵机载雷达杂波谱迭代自适应配准方法[J]. 系统工程与电子技术, 2016, 36 (5): 831- 837.
|
|
WANG J , WANG T , WU J X . Registration-based compensation using iterative adaptive approach in non-side-looking airborne radar[J]. Systems Engineering and Electronics, 2016, 36 (5): 831- 837.
|
8 |
SUN K , MENG H D , LAPIERRE F D , et al. Registration based compensation using sparse representation in conformal array STAP[J]. Signal Processing, 2011, 91 (10): 2268- 2276.
doi: 10.1016/j.sigpro.2011.04.008
|
9 |
RIEDL M , POTTER L C . Knowledge-aided bayesian space-time adaptive processing[J]. IEEE Trans.on Aerospace and Electronic Systems, 2018, 54 (4): 1850- 1861.
doi: 10.1109/TAES.2018.2805141
|
10 |
BANG J H , MELVIN W L , LANTERMAN A D . Model-based clutter cancellation based on enhanced knowledge aided parametric covariance estimation[J]. IEEE Trans.on Aerospace and Electronics Systems, 2015, 51 (1): 154- 166.
doi: 10.1109/TAES.2014.130413
|
11 |
RIEDL M , POTTER L C . Multimodel Shrinkage for knowledge-aided space-time adaptive processing[J]. IEEE Trans.on Aerospace and Electronic Systems, 2018, 54 (5): 2601- 2610.
doi: 10.1109/TAES.2018.2813898
|
12 |
HAN S D , FAN C Y , HUANG X T . A novel STAP based on spectrum-aided reduced-dimension clutter sparse recovery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (2): 213- 217.
doi: 10.1109/LGRS.2016.2635104
|
13 |
LI Z H , ZHANG Y S , HE X Y , et al. Low-complexity off-grid STAP algorithm based on local search clutter subspace estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (12): 1862- 1866.
doi: 10.1109/LGRS.2018.2865536
|
14 |
DUAN K Q , WANG Z T , XIE W C , et al. Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar[J]. IET Signal Processing, 2017, 11 (5): 544- 553.
doi: 10.1049/iet-spr.2016.0183
|
15 |
DIPIETRO R. Extended factored space-time processing for airborne radar systems[C]//Proc.of the 26th Asilomar Conference on signals, Systems, and Computing, Pacific Grove, 1999: 425-430.
|
16 |
PETRE S , PRABHU B , LI J . SPICE: a sparse covariance-based estimation method for array processing[J]. IEEE Trans.on Signal Processing, 2011, 59 (2): 629- 638.
doi: 10.1109/TSP.2010.2090525
|
17 |
HE J , FENG D Z , MA L . Reduced-dimension clutter suppression method for airborne multiple-input multiple-output radar based on three iterations[J]. IET Radar, Sonar and Navigation, 2015, 9 (3): 249- 254.
doi: 10.1049/iet-rsn.2014.0149
|
18 |
ABADIR K M , MAGNUS J R . Matrix algebra[M]. Cambridge: Cambridge University Press, 2005.
|