1 |
INSUN S , JUNMIN L , JUM Y L , et al. A framework for prognostics and health management applications toward smart manufacturing systems[J]. International Journal of Precision Engineering and Manufacturing-green Technology, 2018, 5 (4): 535- 554.
doi: 10.1007/s40684-018-0055-0
|
2 |
LIN Y H , LI X D , HU Y , et al. Deep diagnostics and prognostics: an integrated hierarchical learning framework in PHM applications[J]. Applied Soft Computing, 2018, 72, 555- 564.
doi: 10.1016/j.asoc.2018.01.036
|
3 |
LEI Y G , LI N P , GUO L , et al. Machinery health prognostics: a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104, 799- 834.
doi: 10.1016/j.ymssp.2017.11.016
|
4 |
ZHAO R , YAN R Q , CHEN Z H , et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115, 213- 237.
doi: 10.1016/j.ymssp.2018.05.050
|
5 |
丁红卫, 万良, 龙廷艳. 深度自编码网络在入侵检测中的应用研究[J]. 哈尔滨工业大学学报, 2019, 51 (5): 185- 194.
|
|
DING H W , WAN L , LONG T Y . Rearch on the application of deep auto-encoder network in intrusion detection[J]. Journal of Harbin Institute of Technology, 2019, 51 (5): 185- 194.
|
6 |
GUO L , LI N P , JIA F , et al. A recurrent neural network based health indicator for remaining useful life prediction[J]. Neurocomputing, 2017, 240, 98- 109.
doi: 10.1016/j.neucom.2017.02.045
|
7 |
TANG G, ZHOU Y G, WANG H Q, et al. Prediction of bearing performance degradation with bottleneck fearure based on LSTM network[C]//Proc.of the IEEE International Instrumentation and Measurement Technology Conference, 2018.
|
8 |
REN L , SUN Y Q , WANG H , et al. Prediction of bearing remaining useful life with deep concolutional neural network[J]. Special Section on Cyber-physical-social Computing and Networking, 2018, 6, 13041- 13049.
|
9 |
YOO Y J , BAEK J G . A novel image feature for the remaining useful lifetime prediction of bearings based on continuous wavelet transform and convolutional neural network[J]. Applied Sciences, 2018, 8, 1102- 1119.
doi: 10.3390/app8071102
|
10 |
ZHAO R , YAN R Q , WANG J J , et al. Learning to monitor machine health with convolutional bi-directional Lstm networks[J]. Sensors, 2017, 17 (2): 273- 290.
|
11 |
HINCHI A Z , TKIOUAT M . Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network[J]. Procedia Computer Science, 2018, 127, 123- 132.
doi: 10.1016/j.procs.2018.01.106
|
12 |
GERS F A , SCHRAUDOLPH N N , SCHMIDHUBER J . Learning precise timing with LSTM recurrent networks[J]. Journal of Machince Learning Rearch, 2002, 3, 115- 143.
|
13 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proc.of the Neural Information Processing Systems, 2012: 1097-1105.
|
14 |
NECTOUX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: an experimental platform for bearings accelerated degradation tests[C]//Proc.of the IEEE International Conference on Prognostics and Health Management, 2012.
|
15 |
ALI A D , SOHEIL Z , AMIR A , et al. A multimodal and hybrid deep neural network model for remaining useful life estimation[J]. Computers in Industrial, 2019, 108, 186- 196.
doi: 10.1016/j.compind.2019.02.004
|
16 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G . Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25 (2): 1097- 1105.
|
17 |
赵光权, 刘小勇, 姜泽东, 等. 基于深度学习的轴承健康因子无监督构建方法[J]. 仪器仪表学报, 2018, 39 (6): 82- 88.
|
|
ZHAO G Q , LIU X Y , JIANG Z D , et al. Unsupervised health indicator of bearing based on deep learning[J]. Chinese Journal of Scientific Instrument, 2018, 39 (6): 82- 88.
|
18 |
HU Y, PALME T, FINK O. Deep health indicator extraction: a method based on auto-encoders and extreme learning machines[C]//Proc.of the Annual Conference of the Prognostics and Health Management Society, 2016.
|