系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (10): 2348-2355.doi: 10.3969/j.issn.1001-506X.2020.10.25
收稿日期:
2020-02-23
出版日期:
2020-10-01
发布日期:
2020-09-19
作者简介:
时维国(1973-),男,副教授,博士,主要研究方向为网络控制、智能优化算法。E-mail:基金资助:
Received:
2020-02-23
Online:
2020-10-01
Published:
2020-09-19
摘要:
针对资源受限的网络控制系统,提出一种基于鲸鱼优化相关向量机的变采样周期调度算法。通过网络监测模块获取网络带宽与数据传输时间数据,建立鲸鱼优化相关向量机的预测模型,实现对网络带宽及数据传输时间的预测。采用模糊推理计算系统各回路通信带宽的分配权重,进而结合通信带宽及数据传输时间的预测值对各闭环回路的采样周期进行计算,完成采样周期的实时调节。仿真结果表明,在资源受限条件下,所提算法保证了系统的稳定性与控制精度。
中图分类号:
时维国, 国明. 鲸鱼优化相关向量机的网络控制系统变采样周期调度[J]. 系统工程与电子技术, 2020, 42(10): 2348-2355.
Weiguo SHI, Ming GUO. Variable sampling period scheduling of networked control system based on whale optimization algorithm relevance vector machine[J]. Systems Engineering and Electronics, 2020, 42(10): 2348-2355.
1 | WANG T L , ZHOU C , LU H , et al. Hybrid scheduling and quantized output feedback control for networked control systems[J]. International Journal of Control, Automation and Systems, 2018, 16 (1): 197- 206. |
2 |
TRUONG D Q , AHN K K . Robust variable sampling period control for networked control systems[J]. IEEE Trans.on Industrial Electronics, 2015, 62 (9): 5630- 5643.
doi: 10.1109/TIE.2015.2410765 |
3 | YANG T, HUANG W, ZHAO Y X. A dynamic allocation strategy of bandwidth of networked control systems with bandwidth constraints[C]//Proc.of the IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, 2016: 1153-1158. |
4 | ZHANG Z W, JIA L, LIU X B. Multi-parameter NCS scheduling based on fuzzy neural network[C]//Proc.of the IEEE International Conference on Smart Internet of Things, 2018: 192-197. |
5 | BENITEZ-PEREZ H , ORTEGA-ARJONA J , ROJAS-VARGAS J A , et al. Design of a fuzzy networked control systems priority exchange scheduling algorithm[J]. International Journal of Computers Communications & Control, 2016, 11 (2): 179- 193. |
6 | WANG Y Z , WANG L D , YAN X , et al. Fuzzy immune particle swarm optimization algorithm and its application in scheduling of MVB periodic information[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32 (6): 3797- 3807. |
7 | TIAN Z D , LI S J , WANG Y H , et al. Priority scheduling of networked control system based on fuzzy controller with self-tuning scale factor[J]. IAENG International Journal of Computer Science, 2017, 44 (3): 308- 315. |
8 | 田中大, 高宪文, 史美华, 等. 资源受限网络控制系统的模糊反馈调度[J]. 电机与控制学报, 2013, 17 (1): 94- 101. |
TIAN Z D , GAO X W , SHI M H , et al. Fuzzy feedback sche-duling of resource constrained networked control system[J]. Electric Machines and Control, 2013, 17 (1): 94- 101. | |
9 | 田中大, 李树江, 王艳红, 等. 网络控制系统的动态权重变采样周期调度算法[J]. 哈尔滨工业大学学报, 2016, 48 (4): 114- 120. |
TIAN Z D , LI S J , W Y H , et al. A dynamic weight variable sampling periodical scheduling algorithm for networked control system[J]. Journal of Harbin Institute of Technology, 2016, 48 (4): 114- 120. | |
10 | 邱占芝, 李世峰. 基于神经网络的PID网络化控制系统建模与仿真[J]. 系统仿真学报, 2018, 30 (4): 1423- 1432. |
QIU Z Z , LI S F . Modeling and simulation of PID networked control systems based on neural network[J]. Journal of System Simulation, 2018, 30 (4): 1423- 1432. | |
11 |
TIAN Z D , LI S J , WANG Y H , et al. Scheduling method for networked control system with resource constraints based on fuzzy feedback priority and variable sampling period[J]. Transactions of the Institute of Measurement and Control, 2018, 40 (4): 1136- 1149.
doi: 10.1177/0142331216677574 |
12 |
TIAN Z D , REN Y , WANG G . A variable sampling period scheduling method for networked control system under resource constraints[J]. Australian Journal of Electrical and Electronics Engineering, 2019, 16 (4): 289- 304.
doi: 10.1080/1448837X.2019.1661335 |
13 | 时维国, 王力, 邵城. 资源受限系统的灰色神经网络变采样调度算法[J]. 系统仿真学报, 2018, 30 (4): 1272- 1278. |
SHI W G , WANG L , SHAO C . Variable sampling period scheduling algorithm based on grey neural networks with resource-constrained system[J]. Journal of System Simulation, 2018, 30 (4): 1272- 1278. | |
14 | YOO W, SIM A. Network bandwidth utilization forecast model on high bandwidth networks[C]//Proc.of the International Conference on Computing, Networking and Communications, 2015: 494-498. |
15 |
TIAN Z D , GAO X W , GONG B , et al. Time-delay compensation method for networked control system based on time-delay prediction and implicit PIGPC[J]. International Journal of Automation and Computing, 2015, 12 (6): 648- 656.
doi: 10.1007/s11633-015-0897-7 |
16 | TIPPING M E . Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1 (3): 211- 244. |
17 | SCHMOLCK A , EVERSON R . Smooth relevance vector machine: a smoothness prior extension of the RVM[J]. Machine Learning, 2007, 68 (2): 107- 135. |
18 |
PATEL D , CHOTHANI N G , MISTRY K D , et al. Design and development of fault classification algorithm based on relevance vector machine for power transformer[J]. IET Electric Power Applications, 2018, 12 (4): 557- 565.
doi: 10.1049/iet-epa.2017.0562 |
19 |
XU Y , SHEN S Q , HE Y L , et al. A novel hybrid method integrating ICA-PCA with relevant vector machine for multivariate process monitoring[J]. IEEE Trans.on Control Systems Technology, 2019, 27 (4): 1780- 1787.
doi: 10.1109/TCST.2018.2816903 |
20 |
ZHANG C J , LUO Q , DAI L J , et al. Intensity estimation of tropical cyclones using the relevance vector machine from infrared satellite image data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (3): 763- 773.
doi: 10.1109/JSTARS.2019.2894654 |
21 | LIU J , ZHOU X R , HUANG J Y , et al. Semantic classification for hyperspectral image by integrating distance measurement and relevance vector machine[J]. Multimedia Systems, 2017, 23 (1): 95- 104. |
22 |
MIANJI F A , ZHANG Y . Robust hyperspectral classification using relevance vector machine[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (6): 2100- 2112.
doi: 10.1109/TGRS.2010.2103381 |
23 |
MIRJALILI S , LEWIS A . The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95, 51- 67.
doi: 10.1016/j.advengsoft.2016.01.008 |
24 | ALJARAH I , FARIS H , MIRJALILI S . Optimizing connection weights in neural networks using the whale optimization algorithm[J]. Soft Computing, 2018, 22 (1): 1- 15. |
25 |
QIAO W B , HUANG K , AZIMI M , et al. A novel hybrid prediction model for hourly gas consumption in supply side based on improved whale optimization algorithm and relevance vector machine[J]. IEEE Access, 2019, 7, 88218- 88230.
doi: 10.1109/ACCESS.2019.2918156 |
26 |
QIAO W B , YANG Z , KANG Z Y , et al. Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm[J]. Engineering Applications of Artificial Intelligence, 2020, 87, 103323.
doi: 10.1016/j.engappai.2019.103323 |
27 |
HEMASIAN-ETEFAGH F , SAFI-ESFAHANI F . Dynamic scheduling applying new population grouping of whales meta-heuristic in cloud computing[J]. Journal of Supercomputing, 2019, 75 (10): 6386- 6450.
doi: 10.1007/s11227-019-02832-7 |
28 | ABDEL-BASSET M , ABDLE-FATAH L , SANGAIAH A K . An improved Lévy based whale optimization algorithm for bandwidth-efficient virtual machine placement in cloud comput-ing environment[J]. Cluster Computing, 2019, 22 (4): 8319- 8334. |
29 | HASANIEN H M . Whale optimization algorithm for automatic generation control of interconnected modern power systems including renewable energy sources[J]. IET Generation Transmission & Distribution, 2018, 12 (3): 607- 614. |
30 |
HASANIEN H M . Performance improvement of photovoltaic power systems using an optimal control strategy based on whale optimization algorithm[J]. Electric Power Systems Research, 2018, 157, 168- 176.
doi: 10.1016/j.epsr.2017.12.019 |
31 | RAZEGHI-JAHROMI M, SEYEDI A. Stabilization of distri-buted networked control systems with minimal communications network[C]//Proc.of the American Control Conference, 2012: 515-520. |
[1] | 时维国, 国明. 基于MEEMD-PE与CS-WNN模型的网络时延预测[J]. 系统工程与电子技术, 2020, 42(1): 184-190. |
[2] | 时维国, 许超. 基于相空间重构与鲁棒极限学习机的时延预测[J]. 系统工程与电子技术, 2019, 41(2): 416-421. |
[3] | 逯程, 徐廷学, 王虹. 基于联合局域相关向量机的雷达导引头状态预测方法[J]. 系统工程与电子技术, 2018, 40(1): 9-16. |
[4] | 高明哲, 许爱强, 张伟. 自适应建模相关向量机及其在电子系统状态预测中的应用[J]. 系统工程与电子技术, 2017, 39(8): 1898-1904. |
[5] | 王晓丹, 李睿, 薛爱军, 孙向芳. 基于熵的自适应加权投票HRRP融合识别方法[J]. 系统工程与电子技术, 2017, 39(4): 707-713. |
[6] | 赵顺利1, 尹逊和1, 魏学业1, LAM Hakkeung2. 基于模型的网络控制系统设计:切换控制的平均驻留时间法[J]. 系统工程与电子技术, 2016, 38(8): 1899-1908. |
[7] | 马巧利, 周川, 陈兰浪. 网络控制系统的事件触发与量化控制协同设计[J]. 系统工程与电子技术, 2016, 38(3): 652-657. |
[8] | 尹艳玲1, 王泰华1, 曾旗2. 基于2D模型的网络系统迭代学习控制设计方法[J]. 系统工程与电子技术, 2015, 37(5): 1157-1162. |
[9] | 陈雄姿1, 于劲松2, 陆文高1, 李行善2. 基于综合健康指数与RVM的系统级失效预测[J]. 系统工程与电子技术, 2015, 37(10): 2298-2305. |
[10] | 马奥家,董朝阳,王青,牛尔卓. 基于异步切换的飞行器网络控制系统故障检测[J]. 系统工程与电子技术, 2014, 36(5): 940-946. |
[11] | 尹逊和, 樊雪丽, 张红. 基于异步动态的多机器人系统的一致性[J]. 系统工程与电子技术, 2014, 36(12): 2426-2434. |
[12] | 范庚,马登武,吴明辉,孟上. 电子系统状态时间序列预测的优化相关向量机方法[J]. 系统工程与电子技术, 2013, 35(9): 2011-2015. |
[13] | 田中大, 高宪文, 李琨. 基于KPCA与LSSVM的网络控制系统时延预测方法[J]. Journal of Systems Engineering and Electronics, 2013, 35(6): 1281-1285. |
[14] | 田中大, 高宪文, 李 琨. 基于预测控制的NCS时延补偿算法[J]. 系统工程与电子技术, 2013, 35(10): 2165-2169. |
[15] | 黄丽莲, 陈瑾. 基于Smith补偿与神经网络的网络控制系统PD控制[J]. Journal of Systems Engineering and Electronics, 2012, 34(9): 1884-1888. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||