系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (10): 2246-2256.doi: 10.3969/j.issn.1001-506X.2020.10.13

• 系统工程 • 上一篇    下一篇

融合零样本学习和小样本学习的弱监督学习方法综述

潘崇煜(), 黄健*(), 郝建国(), 龚建兴(), 张中杰()   

  1. 国防科技大学智能科学学院, 湖南 长沙 410073
  • 收稿日期:2020-01-10 出版日期:2020-10-01 发布日期:2020-09-19
  • 通讯作者: 黄健 E-mail:13548971657@163.com;nudtjHuang@hotmail.com;504343990@qq.com;fj_gjx@qq.com;zjiezhang@hotmail.com
  • 作者简介:潘崇煜(1992-),男,博士研究生,主要研究方向为机器学习、人工智能。E-mail:13548971657@163.com|郝建国(1974-),男,副教授,博士,主要研究方向为仿真工程。E-mail:504343990@qq.com|龚建兴(1976-),男,副研究员,博士,主要研究方向为任务规划。E-mail:fj_gjx@qq.com|张中杰(1988-),男,讲师,博士,主要研究方向为数据挖掘。E-mail:zjiezhang@hotmail.com
  • 基金资助:
    国家自然科学基金(61906202)

Survey of weakly supervised learning integrating zero-shot and few-shot learning

Chongyu PAN(), Jian HUANG*(), Jianguo HAO(), Jianxing GONG(), Zhongjie ZHANG()   

  1. College of Intelligence Science, National University of Defense Technology, Changsha 410073, China
  • Received:2020-01-10 Online:2020-10-01 Published:2020-09-19
  • Contact: Jian HUANG E-mail:13548971657@163.com;nudtjHuang@hotmail.com;504343990@qq.com;fj_gjx@qq.com;zjiezhang@hotmail.com

摘要:

深度学习模型严重依赖于大量人工标注的数据,使得其在数据缺乏的特殊领域内应用严重受限。面对数据缺乏等现实挑战,很多学者针对数据依赖小的弱监督学习方法开展研究,出现了小样本学习、零样本学习等典型研究方向。对此,本文主要介绍了弱监督学习方法条件下的小样本学习和零样本学习,包括问题定义、当前主流方法以及实验设计方案,并对典型模型的分类性能进行对比。然后,给出零-小样本学习的问题描述,总结研究现状和实验设计,并对比典型方法的性能。最后,基于当前研究中出现的问题对未来研究方向进行展望,包括多种弱监督学习方法的融合与理论基础的探究,以及在其他领域的应用。

关键词: 弱监督学习, 小样本学习, 零样本学习, 零-小样本学习

Abstract:

The deep learning model relies heavily on a large amount of human-annotated data, which seriously restricts its application in special fields where data is scarce. Facing practical challenges such as lack of data, many researchers have conducted research on the weakly supervised learning method which is weakly data-dependent, and some typical research directions such as few-shot learning and zero-shot learning have emerged. In this regard, this paper mainly introduces the few-shot learning and zero-shot learning under the condition of the weakly supervised learning method, including the problem definition, the current mainstream methods and the experimental design scheme, and the classification performances of typical models are compared. Then, the problem description of zero-to-few-shot learning is given, the current research status and experimental design are summarized, and the performances of typical methods are compared. Finally, based on the problems in the current research, the future research direction is prospected, including the fusion of multiple weakly supervised learning methods and the exploration of theoretical basis, as well as the application in other fields.

Key words: weakly supervised learning, few-shot learning, zero-shot learning, zero-to-few-shot learning

中图分类号: