系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (10): 2246-2256.doi: 10.3969/j.issn.1001-506X.2020.10.13
潘崇煜(), 黄健*(), 郝建国(), 龚建兴(), 张中杰()
收稿日期:
2020-01-10
出版日期:
2020-10-01
发布日期:
2020-09-19
通讯作者:
黄健
E-mail:13548971657@163.com;nudtjHuang@hotmail.com;504343990@qq.com;fj_gjx@qq.com;zjiezhang@hotmail.com
作者简介:
潘崇煜(1992-),男,博士研究生,主要研究方向为机器学习、人工智能。E-mail:基金资助:
Chongyu PAN(), Jian HUANG*(), Jianguo HAO(), Jianxing GONG(), Zhongjie ZHANG()
Received:
2020-01-10
Online:
2020-10-01
Published:
2020-09-19
Contact:
Jian HUANG
E-mail:13548971657@163.com;nudtjHuang@hotmail.com;504343990@qq.com;fj_gjx@qq.com;zjiezhang@hotmail.com
摘要:
深度学习模型严重依赖于大量人工标注的数据,使得其在数据缺乏的特殊领域内应用严重受限。面对数据缺乏等现实挑战,很多学者针对数据依赖小的弱监督学习方法开展研究,出现了小样本学习、零样本学习等典型研究方向。对此,本文主要介绍了弱监督学习方法条件下的小样本学习和零样本学习,包括问题定义、当前主流方法以及实验设计方案,并对典型模型的分类性能进行对比。然后,给出零-小样本学习的问题描述,总结研究现状和实验设计,并对比典型方法的性能。最后,基于当前研究中出现的问题对未来研究方向进行展望,包括多种弱监督学习方法的融合与理论基础的探究,以及在其他领域的应用。
中图分类号:
潘崇煜, 黄健, 郝建国, 龚建兴, 张中杰. 融合零样本学习和小样本学习的弱监督学习方法综述[J]. 系统工程与电子技术, 2020, 42(10): 2246-2256.
Chongyu PAN, Jian HUANG, Jianguo HAO, Jianxing GONG, Zhongjie ZHANG. Survey of weakly supervised learning integrating zero-shot and few-shot learning[J]. Systems Engineering and Electronics, 2020, 42(10): 2246-2256.
表1
不同的小样本学习方法对比分析"
方法 | 机制 | 优点 | 缺点 | 适用范围 |
基于度量的方法 | 在某一度量空间中直接 进行对比匹配 | 模型直观,易于理解 | 训练集样本数量要求相对较高, 性能对模型结构敏感度高 | 支持样本数据量 较大的情况 |
基于优化的方法 | 通过模型自适应优化 使之适应新任务 | 模型具备快速适应 新任务的能力 | 测试任务需和训练任务 实验设置相同,灵活性较差 | 测试环境和训练环境具有 相同设置的情况 |
基于生成式模型的方法 | 通过生成新类别样本, 转化为监督学习问题 | 分步执行,易于追溯 | 生成样本代表性问题, 模型训练困难 | 类别数及支持样本 数量较小的情况 |
基于图神经网络的方法 | 通过边和节点迭代更新 各样本及其之间关系 | 模型结构简单 | 计算量随支持样本数 增加激增 | 类别数及支持样本 数量较小的情况 |
基于记忆单元的方法 | 通过动态更新内存 状态实现新类别学习 | 模型可动态更新 | 额外增加外置 记忆单元,增大内存需求 | 类别数及支持样本 数量较小的情况 |
表3
几种典型小样本学习模型在miniImagenet数据集上的性能对比"
模型 | 特征提取器结构 | 5-way 1-shot/% | 5-way 5-shot/% |
Prototypical Network[ | 64(3)-64(3)-64(3)-64(3) | 49.42 | 68.20 |
Matching Network[ | Inception Network | 46.6 | 60.0 |
Relation Network[ | 64(3)-64(3)-64(3)-64(3) | 57.02 | 71.07 |
MAML[ | 32(3)-32(3)-32(3)-32(3) | 48.70 | 63.11 |
MTL[ | ResNet-12 | 61.2 | 75.5 |
Δ-encoder[ | VGG16 | 59.9 | 69.7 |
MM-Net[ | 64(3)-64(3)-64(3)-64(3) | 53.35 | 66.97 |
GNN[ | 64(3)-96(3)-128(3)-256(3) | 50.33 | 66.41 |
EGNN[ | 64(3)-96(3)-128(3)-256(3) | - | 66.85 |
IDeMe-Net[ | ResNet-18 | 59.14 | 74.63 |
表4
不同零样本学习方法对比分析"
方法 | 机制 | 优点 | 缺点 | 适用范围 |
度量学习方法 | 在某一特征空间中 进行最近邻匹配 | 模型直观,易于理解 | 模型性能受度量空间 影响较大 | 训练集数量较大 |
兼容性学习方法 | 直接计算两个特征空间 向量的相似度 | 模型简单, 计算量较小 | 训练集数据量 要求较高 | 训练集数量较大 |
基于流形结构的方法 | 在特征空间中进行 流形结构迁移 | 模型能够整体考虑 类别间关联关系 | 不同特征空间的流形结构 存在异构性,较难迁移 | 训练数据和测试数据 类别结构相似度较高 |
基于生成式模型的方法 | 通过生成新类别样本, 转化为监督学习问题 | 分步执行,易于追溯 | 生成样本代表性问题, 模型训练困难 | 类别数及支持样本 数量较小的情况 |
表6
几种典型零样本学习模型的分类性能对比"
模型 | 特征提取器结构 | AWA/% | CUB/% | ImageNet 2010(hit@5)/% |
ALE[ | SIFT | 48.5 | 26.9 | - |
SJE[ | GoogLeNet | 60.1 | 29.9 | - |
LatEm[ | GoogLeNet | 72.5 | 45.6 | - |
SAE[ | GoogLeNet | 57.9 | 44.8 | - |
RKT[ | GoogLeNet | 82.43 | 46.24 | - |
CDL[ | ResNet-101 | 69.9 | 54.5 | - |
DeViSE[ | Alexnet | - | - | 31.8 |
AMP[ | AlexNet | 66.0 | - | 41.0 |
EXEM[ | GoogLeNet | 76.5 | 58.5 | - |
LAD[ | VGGNet-19 | 82.48 | 56.63 | - |
SE-ZSL[ | VGGNet-19 | 83.8 | 60.3 | - |
DEM[ | Inception-V2 | 88.1 | 59.0 | 60.7 |
SYNC[ | GoogLeNet | 72.9 | 54.7 | - |
MFMR[ | GoogLeNet | 79.8 | 47.7 | - |
UVDS[ | VGGNet-19 | 82.12 | 45.72 | - |
表7
几种典型零-小样本学习模型在miniImagenet及tieredImageNet数据集上的分类性能"
模型 | 特征提取器结构 | miniImageNet | tieredImageNet | ||
5-way 1-shot | 5-way 5-shot | 5-way 1-shot | 5-way 5-shot | ||
DeViSE[ | Alexnet | 56.99 | 72.63 | 61.78 | 77.17 |
ReViSE[ | GoogLeNet | 57.23 | 73.85 | 62.77 | 77.27 |
CADA-VAE[ | ResNet-101 | 61.59 | 75.63 | 63.16 | 78.86 |
AM3- ProtoNets++[ | ResNet-12 | 65.21 | 75.20 | 67.23 | 78.95 |
AM3-TADAM[ | ResNet-12 | 65.30 | 78.10 | 69.08 | 82.58 |
1 | 张越, 夏鸿斌. 基于弱监督预训练CNN模型的情感分析方法[J]. 计算机工程与应用, 2018, 54 (13): 27- 33. |
ZHANG Y , XIA H B . Sentiment analysis method based on pre-training convolutional neural networks by distant supervision[J]. Computer Engineering and Applications, 2018, 54 (13): 27- 33. | |
2 | 段萌, 王功鹏, 牛常勇. 基于卷积神经网络的小样本图像识别方法[J]. 计算机工程与设计, 2018, 39 (1): 224- 229. |
DUAN M , WANG G P , NIU C Y . Method of small size image recognition based on convolution neural network[J]. Computer Engineering and Applications, 2018, 39 (1): 224- 229. | |
3 |
FU Y , XIANG T , JIANG Y , et al. Recent advances in zero-shot recognition: toward data-efficient understanding of visual content[J]. IEEE Signal Processing Magazine, 2018, 35 (1): 112- 125.
doi: 10.1109/MSP.2017.2763441 |
4 | KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[C]//Proc.of the International Conference on Machine Learning, 2015. |
5 | VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]//Proc.of the Neural Information Processing Systems, 2016: 3637-3645. |
6 | SNELL J , SWERSKY K , ZEMEL R S , et al. Prototypical networks for few-shot learning[J]. Neural Information Processing Systems, 2017, 4077- 4087. |
7 | SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]//Proc.of the Computer Vision and Pattern Recognition, 2018: 1199-1208. |
8 | 汪荣贵, 郑岩, 杨娟, 等. 代表特征网络的小样本学习方法[J]. 中国图象图形学报, 2019, 24 (9): 1514- 1527. |
WANG R G , ZHENG Y , YANG J , et al. Representative feature networks for few-shot learning[J]. Journal of Image and Graphics, 2019, 24 (9): 1514- 1527. | |
9 | FINN C, ABBEEL P, LEVINE S, et al. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proc.of the International Conference on Machine Learning, 2017: 1126-1135. |
10 | MUNKHDALAI T, YU H. Meta networks[C]//Proc.of the International Conference on Machine Learning, 2017: 2554-2563. |
11 | LI Z G , ZHOU F W , CHEN F , et al. Meta-SGD: learning to learn quickly for few shot learning[J]. arXiv preprint arXiv:1707.09835, 2017. |
12 | RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[C]//Proc.of the International Conference on Learning Representations, 2017. |
13 | LEE Y, CHOI S. Gradient-based meta-learning with learned layerwise metric and subspace[C]//Proc.of the International Conference on Machine Learning, 2018: 2927-2936. |
14 | WANG Y, GIRSHICK R, HEBERT M, et al. Low-shot learning from imaginary data[C]//Proc.of the Computer Vision and Pattern Recognition, 2018: 7278-7286. |
15 | HARIHARAN B, GIRSHICK R. Low-shot visual recognition by shrinking and hallucinating features[C]//Proc.of the International Conference on Computer Vision, 2017: 3037-3046. |
16 | SALVARIS M , DEAN D , TOK W H , et al. Generative adversarial networks[J]. arXiv preprint arXiv: 1406.2661, 2014. |
17 | GAO H , SHOU Z , ZAREIAN A , et al. Low-shot learning via covariance-preserving adversarial augmentation networks[J]. arXiv preprint arXiv: 1810.11730, 2018. |
18 | BATTAGLIA P W , HAMRICK J B , BAPST V , et al. Relational inductive biases, deep learning, and graph networks[J]. arXiv preprint arXiv: 1806.01261, 2018. |
19 | SATORRAS V G , ESTRACH J B . Few-shot learning with graph neural networks[J]. arXiv preprint arXiv: 1711.04043, 2017. |
20 | LIU Y , LEE J , PARK M , et al. Learning to Propagatelables: transductive propagation network for few-shot learning[J]. arXiv preprint arXiv: 1805.10002, 2018. |
21 | KAISER L , NACHUM O , ROY A , et al. Learning to remember rare events[J]. arXiv preprint arXiv:1703.03129, 2017. |
22 | SANTORO A , BARTUNOV S , BOTVINICK M , et al. One-shot learning with memory-augmented neural networks[J]. arXiv preprint arXiv: 1605.06065, 2016. |
23 | CAI Q, PAN Y W, YAO T, et al. Memory matching networks for one-shot image recognition[C]//Proc.of the Computer Vision and Pattern Recognition, 2018: 4080-4088. |
24 | LAKE B M, SALAKHUTDINOV R, GROSS J, et al. One shot learning of simple visual concepts[C]//Proc.of the Annual Meeting of the Cognitive Science Society, 2011. |
25 | SUN Q R, LIU Y Y, CHUA T, et al. Meta-transfer learning for few-shot learning[C]//Proc.of the Computer Vision and Pattern Recognition, 2019: 403-412. |
26 | SCHWARTZ E, KARLINSKY L, SHTOK J, et al. Delta-encoder: an effective sample synthesis method for few-shot object recognition[C]//Proc.of the Neural Information Processing Systems, 2018: 2845-2855. |
27 | KIM J M, KIM T, KIM S, et al. Edge-labeling graph neural network for few-shot learning[C]//Proc.of the Computer Vision and Pattern Recognition, 2019: 11-20. |
28 | CHEN Z T, FU Y W, WANG Y X, et al. Image deformation meta-networks for one-shot learning[C]//Proc.of the Computer Vision and Pattern Recognition, 2019: 8680-8689. |
29 | 张鲁宁, 左信, 刘建伟. 零样本学习研究进展[J]. 自动化学报, 2020, 46 (1): 1- 23. |
ZHANG L N , ZUO X , LIU J W . Research and development on zero-shot learning[J]. Acta Automatica Sinica, 2020, 46 (1): 1- 23. | |
30 | 冀中, 汪浩然, 于云龙, 等. 零样本图像分类综述:十年进展[J]. 中国科学:信息科学, 2019, 10 (49): 1299- 1320. |
JI Z , WANG H R , YU Y L , et al. A decadal survey of zero-shot image classification[J]. Scientia Sini ca (Informationis), 2019, 10 (49): 1299- 1320. | |
31 | PALATUCCI M, POMERLEAU D A, HINTON G E, et al. Zero-shot learning with semantic output codes[C]//Proc.of the Neural Information Processing Systems, 2009: 1410-1418. |
32 | 吴凡, 王康. 基于属性平衡正则化的深度零样本学习[J]. 计算机应用与软件, 2018, 35 (10): 165- 170. |
WU F , WANG K . Deep zero-shot learning based on attribute balancing regularization[J]. Computer Applications and Software, 2018, 35 (10): 165- 170. | |
33 | 陈祥凤, 陈雯柏. 度量学习改进语义自编码零样本分类算法[J]. 北京邮电大学学报, 2018, 41 (4): 69- 75. |
CHEN X F , CHEN W B . Improving semantic autoencoder zero-shot classification algorithm by metric learning[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41 (4): 69- 75. | |
34 | SHIGETO Y, SUZUKI I, HARA K, et al. Ridge regression, hubness, and zero-shot learning[C]//Proc.of the European Conference on Machine Learning, 2015: 135-151. |
35 | ZHANG L, XIANG T, GONG S G, et al. Learning a deep embedding model for zero-shot learning[C]//Proc.of the Computer Vision and Pattern Recognition, 2017: 3010-3019. |
36 | 冯鹏, 庹红娅, 乔凌峰, 等. 基于反向投影的zero-shot learning目标分类算法研究[J]. 计算机应用研究, 2017, 34 (11): 3291- 3294. |
FENG P , TUO H Y , QIAO L F , et al. Research on zero-shot object classification based on reversed projection[J]. Application Research of Computers, 2017, 34 (11): 3291- 3294. | |
37 | CHANGPINYO S, CHAO W, SHA F, et al. Predicting visual exemplars of unseen classes for zero-shot learning[C]//Proc.of the International Conference on Computer Vision, 2017: 3496-3505. |
38 | JIANG H J, WANG R P, SHAN S G, et al. Learning discriminative latent attributes for zero-shot classification[C]//Proc.of the International Conference on Computer Vision, 2017: 4233-4242. |
39 | JIANG H J, WANG R P, SHAN S G, et al. Learning class prototypes via structure alignment for zero-shot recognition[C]//Proc.of the European Conference on Computer Vision, 2018: 121-138. |
40 | 冀中, 谢于中, 庞彦伟. 基于典型相关分析和距离度量学习的零样本学习[J]. 天津大学学报, 2017, 50 (8): 813- 820. |
JI Z , XIE Y Z , PANG Y W . Zero-shot learning based on canonical correlation analysis and distance metric learning[J]. Journal of Tianjin University, 2017, 50 (8): 813- 820. | |
41 | 秦牧轩, 荆晓远, 吴飞. 基于公共空间嵌入的端到端深度零样本学习[J]. 计算机技术与发展, 2018, 11 (28): 44- 47. |
QIN M X , JING X Y , WU F . End-to-end deep zero-shot lear-ning based on co-space embedding[J]. Computer Technology and Development, 2018, 11 (28): 44- 47. | |
42 | 乔雪, 彭晨, 段贺, 等. 基于共享特征相对属性的零样本图像分类[J]. 电子与信息学报, 2017, 39 (7): 1563- 1570. |
QIAO X , PENG C , DUAN H , et al. Shared features based rela-tive attributes for zero-shot image classification[J]. Journal of Electronics & Information Technology, 2017, 39 (7): 1563- 1570. | |
43 | 鲁亚男, 鲁林溪, 杜东舫. 零样本学习在图像分类中的应用[J]. 电子技术与软件工程, 2018, (12): 69- 69. |
LU Y N , LU L X , DU D F . The applications of zero-shot learning in image classification[J]. Electronic Technology & Software Engineering, 2018, (12): 69- 69. | |
44 | ROMERAPAREDES B, TORR P H. An embarrassingly simple approach to zero-shot learning[C]//Proc.of the International Conference on Machine Learning, 2015: 2152-2161. |
45 | FROME A, CORRADO G S, SHLENS J, et al. DeViSE: a deep visual-semantic embedding model[C]//Proc.of the Neural Information Processing Systems, 2013: 2121-2129. |
46 | AKATA Z, REED S, WALTER D J, et al. Evaluation of output embeddings for fine-grained image classification[C]//Proc.of the Computer Vision and Pattern Recognition, 2015: 2927-2936. |
47 |
AKATA Z , PERRONNIN F , HARCHAOUI Z , et al. Labe-lembedding for image classification[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2016, 38 (7): 1425- 1438.
doi: 10.1109/TPAMI.2015.2487986 |
48 | XIAN Y, AKATA Z, SHARMA G, et al. Latent embeddings for zero-shot classification[C]//Proc.of the Computer Vision and Pattern Recognition, 2016: 69-77. |
49 | CHANGPINYO S, CHAO W, GONG B, et al. Synthesized classifiers for zero-shot learning[C]//Proc.of the Computer Vision and Pattern Recognition, 2016: 5327-5336. |
50 | SOCHER R, GANJOO M, MANNING C D, et al. Zero-shot learning through cross-modal transfer[C]//Proc.of the Neural Information Processing Systems, 2013: 935-943. |
51 | ZHAO B, WU B, WU T, et al. Zero-shot learning posed as a missing data problem[C]//Proc.of the International Confe-rence on Computer Vision, 2017: 2616-2622. |
52 | NOROUZI M , MIKOLOV T , BENGIO S , et al. Zero-shot learning by convex combination of semantic embeddings[J]. arXiv preprint arXiv:1312.5650, 2013. |
53 | WANG Q , CHEN K . Zero-shot visual recognition via bidirectional latent embedding[J]. International Journal of Computer Vision, 2017, 124 (3): 356- 383. |
54 | WANG D, LI Y, LIN Y, et al. Relational knowledge transfer for zero-shot learning[C]//Proc.of the National Conference on Artificial Intelligence, 2016: 2145-2151. |
55 | 马丽红, 谭学仕. 共有结构假设下流形正则图的零样本分类方法[J]. 计算机工程与应用, 2019, 55 (15): 153- 160. |
MA L H , TAN X S . Zero-shot classification with manifold regu-larization graph based on common structure assumption[J]. Computer Engineering and Applications, 2019, 55 (15): 153- 160. | |
56 | LONG Y, LIU L, SHAO L, et al. From zero-shot learning to conventional supervised classification: unseen visual data synthesis[C]//Proc.of the Computer Vision and Pattern Recognition, 2017: 6165-6174. |
57 | ZHU Y, ELHOSEINY M, LIU B, et al. A generative adversarial approach for zero-shot learning from noisy texts[C]//Proc.of the Computer Vision and Pattern Recognition, 2018: 1004-1013. |
58 | XIAN Y, LORENZ T, SCHIELE B, et al. Feature generating networks for zero-shot learning[C]//Proc.of the Computer Vision and Pattern Recognition, 2018: 5542-5551. |
59 | VERMA V K, ARORA G, MISHRA A K, et al. Generalized zero-shot learning via synthesized examples[C]//Proc.of the Computer Vision and Pattern Recognition, 2018: 4281-4289. |
60 | CHEN L, ZHANG H, XIAO J, et al. Zero-shot visual recognition using semantics-preserving adversarial embedding networks[C]//Proc.of the Computer Vision and Pattern Recognition, 2018: 1043-1052. |
61 |
JI Z , WANG J , YU Y , et al. Class-specific synthesized dictionary model for zero-shot learning[J]. Neurocomputing, 2019, 329, 339- 347.
doi: 10.1016/j.neucom.2018.10.069 |
62 |
LAMPERT C H , NICKISCH H , HARMELING S , et al. Attribute-based classification for zero-shot visual object categorization[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2014, 36 (3): 453- 465.
doi: 10.1109/TPAMI.2013.140 |
63 | WAH C , BRANSON S , WELINDER P , et al. The caltech-UCSD birds-200-2011 dataset[J]. Advances in Water Resources, 2011. |
64 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proc.of the Computer Vision and Pattern Recognition, 2009: 248-255. |
65 | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proc.of the Computer Vision and Pattern Recognition, 2015. |
66 | SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014. |
67 | KODIROV E, XIANG T, GONG S, et al. Semantic autoencoder for zero-shot learning[C]//Proc.of the Computer Vision and Pattern Recognition, 2017: 4447-4456. |
68 | FU Z, XIANG T, KODIROV E, et al. Zero-shot object recognition by semantic manifold distance[C]//Proc.of the Compu-ter Vision and Pattern Recognition, 2015: 2635-2644. |
69 | XU X, SHEN F M, YANG Y, et al. Matrix tri-factorization with manifold regularizations for zero-shot learning[C]//Proc.of the Computer Vision and Pattern Recognition, 2017: 2007-2016. |
70 | SCHONFELD E, EBRAHIMI S, SINHA S, et al. Generalized zero-and few-shot learning via aligned variational autoencoders[C]//Proc.of the Computer Vision and Pattern Recognition, 2019: 8247-8255. |
71 | XING C, ROSTAMZADEH N, ORESHKIN B N, et al. Adaptive cross-modal few-shot learning[C]//Proc.of the Neural Information Processing Systems, 2019: 4848-4858. |
72 | REN M , RAVI S , TRIANTAFILLOU E , et al. Meta-learning for semi-supervised few-shot classification[J]. arXiv preprint arXiv:1803.00676, 2018. |
73 | TSAI Y H, HUANG L, SALAKHUTDINOV R, et al. Learning robust visual-semantic embeddings[C]//Proc.of the International Conference on Computer Vision, 2017: 3591-3600. |
[1] | 刘旗, 张新禹, 刘永祥. 基于门控多尺度匹配网络的小样本SAR目标识别[J]. 系统工程与电子技术, 2022, 44(11): 3346-3356. |
[2] | 晏媛, 孙俊, 孙晶明, 于俊朋. 雷达小样本目标识别方法及应用分析[J]. 系统工程与电子技术, 2021, 43(3): 684-692. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||