1 |
WAN J , YU X , GUO Q . LPI radar waveform recognition based on CNN and TPOT[J]. Symmetry, 2019, 11 (5): 725-1- 725-15.
|
2 |
KISHORE T R , RAO K D . Automatic intrapulse modulation classification of advanced LPI radar waveforms[J]. IEEE Trans.on Aerospace and Electronic Systems, 2017, 53 (2): 901- 914.
doi: 10.1109/TAES.2017.2667142
|
3 |
DAVIS R M , FANTE R L , PERRY R P , et al. Phase-coded waveforms for radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 2007, 43 (1): 401- 408.
doi: 10.1109/TAES.2007.357142
|
4 |
邹梦然, 陈永游, 曾德国, 等. 基于相位差分算法的多相编码信号实时脉内识别技术[J]. 航天电子对抗, 2015, 31 (2): 56- 60, 64.
|
|
ZOU M R , CHEN Y Y , ZENG D G , et al. Real-time intra-pulse identification of multi-phase coded signals based on phase diffe-rence algorithm[J]. Aerospace Electronic Warfare, 2015, 31 (2): 56- 60, 64.
|
5 |
王泽众, 曹万平, 刘锋, 等. 基于周期Wigner-Hough变换的多相编码连续波雷达信号检测算法[J]. 海军航空工程学院学报, 2012, 27 (6): 605- 612.
|
|
WANG Z Z , CAO W P , LIU F , et al. Detection algorithm of multiphase coded continuous wave radar signal based on periodic wigner-hough transform[J]. Journal of Naval Aeronautical and Astronautical University, 2012, 27 (6): 605- 612.
|
6 |
王冰.多相码雷达信号脉内特征分析方法研究[D].哈尔滨:哈尔滨工程大学, 2019.
|
|
WANG B. Study on the method of intra-pulse characteristic analysis of multi-phase code radar signal[D]. Harbin: Harbin Engineering University, 2019.
|
7 |
BRITO C , MACHADO A , SOUSA A , et al. Electrocardiogram beat-classification based on a ResNet network[J]. Studies in Health Technology and Informatics, 2019, 264, 55- 59.
|
8 |
YU L , WANG S , LAI K K . Credit risk assessment with a multistage neural network ensemble learning approach[J]. Expert Systems with Applications, 2008, 34 (2): 1434- 1444.
doi: 10.1016/j.eswa.2007.01.009
|
9 |
HAN X H , WANG L H , XU S J , et al. Recognizing roles of online illegal gambling participants: an ensemble learning approach[J]. Computers & Security, 2019, 87, 101588.
|
10 |
ARAQUE O , CORCUEAR-PLATAS I , SANCHEZ-RADA J F , et al. Enhancing deep learning sentiment analysis with ensemble techniques in social applications[J]. Expert Systems with Application, 2017, 77, 236- 246.
doi: 10.1016/j.eswa.2017.02.002
|
11 |
YU L , ZHOU R T , TANG L , et al. A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data[J]. Applied Soft Computing, 2018, 69, 192- 202.
doi: 10.1016/j.asoc.2018.04.049
|
12 |
SADAM A A , EL-SAYED M E A . Using word embedding and ensemble learning for highly imbalanced data sentiment analysis in short arabic text[J]. Procedia Computer Science, 2017, 109, 359- 366.
doi: 10.1016/j.procs.2017.05.365
|
13 |
黄颖坤, 金炜东, 余志斌, 等. 基于深度学习和集成学习的辐射源信号识别[J]. 系统工程与电子技术, 2018, 40 (11): 2420- 2425.
|
|
HUANG Y K , JIN W D , YU Z B , et al. Radiation source signal recognition based on deep learning and integrated learning[J]. Systems Engineering and Electronics Technology, 2018, 40 (11): 2420- 2425.
|
14 |
LIU T , GUAN Y Y , LIN Y . Research on modulation recognition with ensemble learning[J]. EURASIP Journal on Wireless Communications and Networking, 2017, 2017 (1): 179.
|
15 |
ZHANG Z , LI Y B , JIN S S , et al. Modulation signal recognition based on information entropy and ensemble learning[J]. Entropy, 2018, 20 (3): 198.
doi: 10.3390/e20030198
|
16 |
徐继伟, 杨云. 集成学习方法:研究综述[J]. 云南大学学报(自然科学版), 2018, 40 (6): 1082- 1092.
|
|
XU J W , YANG Y . Integrated learning methods: research review[J]. Journal of Yunnan University(Natural Science Edition), 2018, 40 (6): 1082- 1092.
|
17 |
杨新武, 马壮, 袁顺. 基于弱分类器调整的多分类Adaboost算法[J]. 电子与信息学报, 2016, 38 (2): 373- 380.
|
|
YANG X W , MA Z , YUAN S . Adaboost algorithm for multi-classification based on weak classifier adjustment[J]. Journal of Electronics & Information Techology, 2016, 38 (2): 373- 380.
|
18 |
ZHU J , ZOU H , ROSSET S , et al. Multi-class adaboost[J]. Statistics and Its Interface, 2009, 2 (3): 349- 360.
doi: 10.4310/SII.2009.v2.n3.a8
|
19 |
GAO Y Z, RONG W G, SHEN Y K, et al. Convolutional neural network based sentiment analysis using Adaboost combination[C]//Proc.of the International Joint Conference on Neural Networks, 2016.
|
20 |
YANG S, CHEN L F, YAN T, et al. An ensemble classification algorithm for convolutional neural network based on AdaBoost[C]//Proc.of the IEEE/ACIS 16th International Confe-rence on Computer and Information Science, 2017.
|
21 |
HE K W, ZHANG X Y, REN S, et al. Deep residual learning for image recognition[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
22 |
王青媛, 胡婧, 谢智东, 等. 基于形态学预处理的时频检测及识别算法[J]. 军事通信技术, 2015, 36 (3): 77- 82, 98.
|
|
WANG Q Y , HU J , XIE Z D , et al. Time-frequency detection and recognition algorithm based on morphological preprocessing[J]. Journal of Military Communications Technology, 2015, 36 (3): 77- 82, 98.
|
23 |
熊坤来, 罗景青, 吴世龙. 基于时频图像和神经网络的LPI雷达信号调制识别[J]. 弹箭与制导学报, 2011, 31 (5): 230- 233.
|
|
XIONG K L , LUO J Q , WU S L . Modulation recognition of LPI radar signal based on time-frequency image and neural network[J]. Journal of Projectile and Arrow Guidance, 2011, 31 (5): 230- 233.
|
24 |
VANHOY G , SCHUCKER T , BOSE T . Classification of LPI radar signals using spectral correlation and support vector machines[J]. Analog Integrated Circuits & Signal Processing, 2017, 91 (2): 305- 313.
|