1 |
DONOHO D L . Compressed sensing[J]. IEEE Trans.on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582
|
2 |
焦李成, 杨淑媛, 刘芳, 等. 压缩感知回顾与展望[J]. 电子学报, 2011, 39 (7): 1651- 1662.
|
|
JIAO L C , YANG S Y , LIU F , et al. Retrospect and prospect of compressed sensing[J]. Journal of Electronics, 2011, 39 (7): 1651- 1662.
|
3 |
CRAKE C , SEAN F , MARSAC L , et al. Passive acoustic mapping and B-mode ultrasound imaging utilizing compressed sen-sing for real-time monitoring of cavitation-enhanced drug delivery[J]. The Journal of the Acoustical Society of America, 2018, 143 (3): 1872.
doi: 10.1121/1.5036143
|
4 |
樊晓宇, 练秋生. 基于双稀疏模型的压缩感知核磁共振图像重构[J]. 生物医学工程学杂志, 2018, 35 (5): 688- 696.
|
|
FAN X Y , LIAN Q S . Compressed perceptual MRI image reconstruction based on double sparse model[J]. Journal of Biomedical Engineering, 2018, 35 (5): 688- 696.
|
5 |
MARKUS L , MARIAN C , MARKKU J . Distributed distortion-rate optimized compressed sensing in wireless sensor networks[J]. IEEE Trans.on Communications, 2018, 66 (4): 1609- 1623.
doi: 10.1109/TCOMM.2018.2790385
|
6 |
陈善雄, 何中市, 熊海灵, 等. 一种基于压缩感知的无线传感信号重构算法[J]. 计算机学报, 2015, 38 (3): 614- 624.
|
|
CHEN S X , HE Z S , XIONG H L , et al. A reconstruction algorithm of wireless sensor signal based on compressed sensing[J]. Journal of Computer Science, 2015, 38 (3): 614- 624.
|
7 |
ZHANG L , LI B L , XIE V , et al. CSVE radar:high-range-resolution radar using compressive sensing and virtual expanding technique[J]. IET Radar, Sonar & Navigation, 2017, 11 (6): 1002- 1010.
|
8 |
李佳, 高志荣, 熊承义, 等. 加权结构组稀疏表示的图像压缩感知重构[J]. 通信学报, 2017, 38 (2): 196- 202.
|
|
LI J , GAO Z R , XIONG C Y , et al. Image compression and perception reconstruction based on sparse representation of weighted structure group[J]. Journal of Communications, 2017, 38 (2): 196- 202.
|
9 |
RUBINSTEIN R , BRUCKSTEIN A M , ELAD M . Dictionaries for sparse representation modeling[J]. Proceedings of the IEEE, 2010, 98 (6): 1045- 1057.
doi: 10.1109/JPROC.2010.2040551
|
10 |
HONG T , ZHU Z H . Online learning sensing matrix and sparsifying dictionary simultaneously for compressive sensing[J]. Signal Processing, 2018, 153 (12): 188- 196.
|
11 |
ZHA Z Y , ZHANG X G , WANG Q , et al. Group-based sparse representation for image compressive sensing reconstruction with non-convex regularization[J]. Neurocomputing, 2018, 296, 55- 63.
doi: 10.1016/j.neucom.2018.03.027
|
12 |
ZHANG J , ZHAO D B , GAO W . Group-based sparse representation for image restoration[J]. IEEE Trans.on Image Processing, 2014, 23 (8): 3336- 3351.
doi: 10.1109/TIP.2014.2323127
|
13 |
FENG L , SUN H , FENG L , et al. Blind compressive sensing method via local sparsity and nonlocal similarity[J]. Journal of Nanjing University of Science & Technology, 2017, 41 (4): 399- 404.
|
14 |
YU J, DONG S M.Nonlocal variational method application for image denoising[C]//Proc.of the 7th IEEE International Confe-rence on Signal Processing, Communications and Computing, 2018.
|
15 |
FENG L , SUN H J , SUN Q S , et al. Compressive sensing via nonlocal low-rank tensor regularization[J]. Neurocomputing, 2016, 216, 45- 60.
doi: 10.1016/j.neucom.2016.07.012
|
16 |
BUADES A, COLL B, MORUL J M.A non-local algorithm for image denoising[C]//Proc.of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 60-65.
|
17 |
RUDIN L I, OSHER S, FATEMI E.Nonlinear total variation based noise removal algorithms[C]//Proc.of the 11th Annual International Conference of the Center for Nonlinear Studies, 1992: 259-268.
|
18 |
CANDES E J , WAKIN M B , BOYD S P . Enhancing sparsity by reweighted ℓ1 minimization[J]. Journal of Fourier Analysis & Applications, 2008, 14 (5/6): 877- 905.
doi: 10.1007/s00041-008-9045-x
|
19 |
陈建, 苏凯雄, 杨秀芝, 等. 基于变分模型的块压缩感知重构算法[J]. 通信学报, 2016, 37 (1): 100- 109.
|
|
CHEN J , SU K X , YANG X Z , et al. Block compression perceptual reconstruction algorithm based on variational model[J]. Journal of Communications, 2016, 37 (1): 100- 109.
|
20 |
ZHANG J, LIU S H, XIONG R Q, et al.Improved total varia-tion based image compressive sensing recovery by nonlocal regularization[C]//Proc.of the IEEE International Symposium on Circuits & Systems, 2013: 2836-2839.
|
21 |
WANG T , NAKAMOTO K , ZHANG H Y , et al. Reweighted anisotropic total variation minimization for limited-angle CT reconstruction[J]. IEEE Trans.on Nuclear Science, 2017, 64 (10): 2742- 2760.
doi: 10.1109/TNS.2017.2750199
|
22 |
BLUMENSATH T . Accelerated iterative hard thresholding[J]. Signal Processing, 2012, 92, 752- 756.
doi: 10.1016/j.sigpro.2011.09.017
|
23 |
GOLDSREIN T , OSHER S . The split Bregman method for L1-regularized problems[J]. SIAM Journal on Image Sciences, 2009, 2 (2): 323- 343.
doi: 10.1137/080725891
|
24 |
ZHANG M L, DESROSIERS C, ZHANG C M.Effective compressive sensing via reweighted total variation and weighted nuclear norm regularization[C]//Proc.of the IEEE International Conference on Acoustics, 2017: 1802-1806.
|
25 |
LI C B , YIN W T , JIANG H , et al. An efficient augmented Lagrangian method with applications to total variation minimization[J]. Computational Optimization and Applications, 2013, 56 (3): 507- 530.
doi: 10.1007/s10589-013-9576-1
|
26 |
ZHANG J , ZHAO C , ZHAO D B , et al. Image compressive sensing recovery using adaptively learned sparsifying basis via L0 minimization[J]. Signal Processing, 2014, 103, 114- 126.
doi: 10.1016/j.sigpro.2013.09.025
|