1 |
REDTKE J, MUELLER S, SCHAUS V, et al. LUCA2-an enhanced long-term utility for collision analysis[C]//Proc.of the 7th European Conference on Space Debris, 2017.
|
2 |
DOLADO-PEREZ J C, POMAIN D C, BRUNO R. Introducing MEDEE-a new orbital debris evolutionary model[C]//Proc.of the 6th European Conference on Space Debris, 2013.
|
3 |
LIOU J C , HALL D T , KRISKO P H , et al. LEGEND-A three-dimensional LEO-to-GEO debris evolutionary model[J]. Advances in Space Research, 2014, 34 (5): 981- 986.
|
4 |
WALKER R , MARTIN C E , STOKES P H , et al. Analysis of the effectiveness of space debris mitigation measures using the DELTA model[J]. Advances in Space Research, 2001, 28 (9): 1437- 1445.
doi: 10.1016/S0273-1177(01)00445-8
|
5 |
HANADA T , ARIYOSHI Y , MIYAZAKI K , et al. Orbital debris modeling at Kyushu University[J]. Space Technology and Science, 2009, 24 (2): 23- 35.
|
6 |
LEWIS H G , SWINERD G G , NEWLAND R J . The space debris environment: future evolution[J]. The Aeronautical Journal, 2011, 115 (1166): 241- 247.
doi: 10.1017/S0001924000005698
|
7 |
ANSELMO L , ROSSI A , PARDINI A , et al. Update results on the long-term evolution of the space debris environment[J]. Advances in Space Research, 2001, 28, 1427- 1436.
doi: 10.1016/S0273-1177(01)00444-6
|
8 |
LIOU J C, ANIKYMAR A K, VIRGILI B B, et al. Stability of the future LEO environment-an IADC comparison study[C]//Proc.of the 6th European Conference on Space Debris, 2013.
|
9 |
LUIGI S G , LEWIS H G , CAMILLA C . Sensitivity analysis of launch activities in low Earth orbit[J]. Acta Astronautica, 2019, 158, 129- 139.
doi: 10.1016/j.actaastro.2018.05.043
|
10 |
DOLADO-PEREZ J C , PARDINI C , ANSELMO L . Review of the uncertainty sources affecting the long-term predictions of space debris evolutionary models[J]. Acta Astronautica, 2015, 113, 51- 65.
doi: 10.1016/j.actaastro.2015.03.033
|
11 |
RADTKE J, STOLL E, LEWIS H, et al. The impact of the increase in small satellite launch traffic on the long-term evolution of the space debris environment[C]//Proc.of the 7th European Conference on Space Debris, 2017.
|
12 |
Work Group 2 of Inter-Agency Space Debris Coordination Committee. Stability of the future LEO environment[R]. Germany, Inter-Agency Space Debris Coordination Committee, 2013: 1-22.
|
13 |
LIOU J C, ANIKUMAR A K, VIRGILI B B, et al. Stability of the future LEO environment-an IADC comparison study[C]//Proc.of the 6th European Conference on Space Debris, 2013.
|
14 |
BASTIDA V B , DOLADO-PEREZ J C , LEWIS H G , et al. Risk to space sustainability from large constellations of satellites[J]. Acta Astronautica, 2016, 126, 154- 162.
doi: 10.1016/j.actaastro.2016.03.034
|
15 |
VIRGILI B B, KRAG H. Small satellites and the future space debris environment[C]//Proc.of the 30th International Symposium on Space Technology and Science, 2015.
|
16 |
VIRGILI B B, KRAG H, LEWIS H, et al. Mega-constellations, small satellites and their impact on the space debris environment[C]//Proc.of the 67th International Astronautical Congress, 2016.
|
17 |
KITAJIMA S, ABEB S, HANADAC T, et al. Influences of MEGA constellations on the orbital environment[C]//Proc.of the 67th International Astronautical Congress, 2016.
|
18 |
KAWAMOTO S , HIRAI T , KITAJIMA S , et al. Evaluation of space debris mitigation measures using a debris evolutionary model[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2018, 16 (7): 599- 603.
doi: 10.2322/tastj.16.599
|
19 |
LEWIS H G, RADTKE J, ROSSI A, et al. Sensitive of the space debris environment to large constellations and small satellites[C]//Proc.of the 7th European Conference on Space Debris, 2017.
|
20 |
ROSSI A, ALESSI E M, VALSECCHI G B, et al. A quantitative evaluation of the environmental impact of the mega constellations[C]//Proc.of the 7th European Conference on Space Debris, 2017.
|
21 |
MUELHAUPT T J , SORGE M E , MORIN J , et al. Space traffic management in the new space era[J]. The Journal of Space Safety Engineering, 2019, 6, 80- 87.
doi: 10.1016/j.jsse.2019.05.007
|
22 |
Federal Communications commission. Application for approval for orbital deployment and operating authority for the SpaceX NGSO satellite system[EB/OL]. [2019-10-1]. https://www.fcc.gov/document/fcc-authorizes-spacex-provide-broadband-satellite-services.
|
23 |
Federal communications commission. FCC boosts satellite broadband connectivity & competition[EB/OL]. [2019-10-1]. https://www.fcc.gov/document/fcc-boosts-satellite-broadband-connectivity-competition.
|
24 |
Federal Communications commission. International bureau grants SpaceX's modification[EB/OL]. [2019-10-1]. https://www.fcc.gov/document/international-bureau-grants-spacexs-modification.
|
25 |
王晓伟, 刘静, 崔双星. 一种应用于空间碎片演化模型的碰撞概率算法[J]. 宇航学报, 2019, 40 (4): 482- 488.
|
|
WANG X W , LIU J , CUI S X . A collision probability estimation algorithm used in space debris evolutionary model[J]. Journal of Astronautics, 2019, 40 (4): 482- 488.
|
26 |
JOHNSON N L , KRISKO P H , LIOU J C , et al. NASA's new breakup model of evolve 4.0[J]. Advance in Space Research, 2001, 28 (9): 1377- 1384.
doi: 10.1016/S0273-1177(01)00423-9
|
27 |
WANG X W, LIU J. An introduction to a new space debris evolution model-SOLEM[EB/OL]. [2019-10-1]. http://www.hindawi.com/journals/aa/2019/2738276/.
|
28 |
王晓伟,刘静,吴相彬,等.空间碎片长期演化模型与初步结果分析[C]//第八届全国空间碎片学术交流会, 2015: 238-245.
|
|
WANG X W, LIU J, WU X B, et. Al. Space objects long-term evolution model and the first analysis[C]//Proc.of the 8th Space Debris Meeting in China, 2015: 238-245.
|
29 |
王晓伟,刘静,崔双星,等.基于SOLEM模型的碎片减缓和清除策略影响分析[C]//第九届全国空间碎片学术交流会, 2017: 299-307.
|
|
WANG X W, LIU J, CUI S X, et al. Analysis of effects of mitigation and active debris removal using SOLEM[C]//Proc.of the 9th Space Debris Meeting in China, 2017: 299-307.
|
30 |
张育林, 范丽, 张燕, 等. 卫星星座理论与设计[M]. 北京: 科学出版社, 2008: 39- 52.
|
|
ZHANG Y L , FAN L , ZHANG Y , et al. Theory and design of satellite constellations[M]. Beijing: Science Press, 2008: 39- 52.
|