1 |
ANDERSONA A , CARPENTER D S , BEGIER M J , et al. Modeling the cost of bird strikes to US civil aircraft[J]. Transportation Research Part D, 2015, 38, 49- 58.
doi: 10.1016/j.trd.2015.04.027
|
2 |
ROCAGONZALEZ J L, VERLOPEZ J A, BERMUDEZA G R. Organisational and costing aspects to prevent wildlife strikes on airports: a case study of Spanish airport security managers[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S0925753518314012.
|
3 |
WASHBURN B E , CISAR P J , DEVAULTA T L . Wildlife strikes to civil helicopters in the US, 1990-2011[J]. Transportation Research Part D, 2013, 24, 83- 88.
doi: 10.1016/j.trd.2013.06.004
|
4 |
Federal Aviation Administration. Wildlife strikes to civil aircraft in the United States 1990-2017 [R]. Washington D.C. Federal Aviation Administration, 2019.
|
5 |
李卫东.中国民航飞机鸟击事件统计分析与研究[D].西安:西北工业大学, 2005.
|
|
LI W D. Statistical analysis and research on bird attack events of Chinese civil aviation aircraft[D]. Xi'an: Northwestern Polytechnical University, 2005.
|
6 |
SIEMANN M H , RITT S A . Novel particle distributions for SPH bird-strike simulations[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 343, 746- 766.
doi: 10.1016/j.cma.2018.08.044
|
7 |
CAI J , BAO H , ZUO H F , et al. Safety evaluation of airworthiness requirement of bird-strike on aeroplane[J]. Engineering Failure Analysis, 2019, 102, 407- 416.
doi: 10.1016/j.engfailanal.2019.04.042
|
8 |
KIM D H , KIM S W . Evaluation of bird strike-induced damages of helicopter composite fuel tank assembly based on fluid-structure interaction analysis[J]. Composite Structures, 2019, 201 (15): 676- 686.
|
9 |
LOPEALAGO M , CASADO R , BERMUDEZ A , et al. A predictive model for risk assessment on imminent bird strikes on airport areas[J]. Aerospace Science and Technology, 2017, 62 (62): 19- 30.
|
10 |
LIU J , LI Y , YU X C , et al. Design of aircraft structures against threat of bird strikes[J]. Chinese Journal of Aeronautics, 2018, 31 (7): 1535- 1558.
doi: 10.1016/j.cja.2018.05.004
|
11 |
于思璇, 王华伟. 基于稀疏降噪自编码神经网络的通用航空风险预测[J]. 系统工程与电子技术, 2019, 41 (1): 112- 117.
|
|
YU S X , WANG H W . Risk forecasting in general aviation based on sparse de-noising auto-encoder neural network[J]. Systems Engineering and Electronics, 2019, 41 (1): 112- 117.
|
12 |
RAO A H, MARAIS K. A state-based approach to modeling general aviation accidents[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S0951832019303424.
|
13 |
BURNS K, BONACETO C. An empirically benchmarked human reliability analysis of general aviation[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S0951832017310219.
|
14 |
刁斌.飞机风挡鸟撞有限元模拟及撞击影响分析[D].南京:南京航空航天大学, 2017.
|
|
DIAO B. Finite element simulation and impact analysis of aircraft windshield bird collision[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
|
15 |
杨盛华, 尹洋, 郭欣萌, 等. 基于多源遥感数据的净空区建筑物三维动态监测[J]. 测绘通报, 2019, (S1): 105- 109.
|
|
YANG S H , YIN Y , GUO X M , et al. Three-dimensional dyna-mic monitoring method of clearance area buildings based on multi-source remote sensing data[J]. Bulletin of Surveying and Mapping, 2019, (S1): 105- 109.
|
16 |
OKTAY A B, KOCER A. Differential diagnosis of Parkinson and essential tremor with convolutional LSTM networks[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S1746809419302642.
|
17 |
WANG J W , CHEN R X , HE Z C . Traffic speed prediction for urban transportation network: a path based deep learning approach[J]. Transportation Research Part C: Emerging Technologies, 2019, 100, 372- 385.
doi: 10.1016/j.trc.2019.02.002
|
18 |
LI P, MOHAMED A, YUAN J H. Real-time crash risk prediction on arterials based on LSTM-CNN[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S0001457519311108.
|
19 |
ERTAM F . An effective gender recognition approach using voice data via deeper LSTM networks[J]. Applied Acoustics, 2019, 156, 351- 358.
doi: 10.1016/j.apacoust.2019.07.033
|
20 |
CAO J , LI Z , LI J . Financial time series forecasting model based on CEEMDAN and LSTM[J]. Physica A: Statistical Mechanics and its Applications, 2018, 519, 127- 139.
|
21 |
MAJID M, SAFABAKHSH R. Correlational convolutional LSTM for human action recognition[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S0925231219304436.
|
22 |
MUZAFFAR S , AFSHARI A . Short-term load forecasts using LSTM networks[J]. Energy Procedia, 2019, 158, 2922- 2927.
doi: 10.1016/j.egypro.2019.01.952
|
23 |
XIAO C J, CHEN N C, HU C L. Short-and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S0034425719303773.
|
24 |
ZHANG Q , WANG H , DONG J Y , et al. Prediction of sea surface temperature using long short-term memory[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (10): 1745- 1749.
doi: 10.1109/LGRS.2017.2733548
|
25 |
ZHANG B, ZHANG H W, ZHAO G M, et al. Constructing a PM 2.5 concentration prediction model by combining auto-encoder with Bi-LSTM neural networks[EB/OL]. [2019-06-03]. https://www.sciencedirect.com/science/article/pii/S1364815219300192.
|
26 |
ELSHEIKH A , YACOUT S , OUALI M S . Bidirectional handshaking LSTM for remaining useful life prediction[J]. Neurocomputing, 2019, 323, 148- 156.
doi: 10.1016/j.neucom.2018.09.076
|
27 |
CABRERA D , GUAMAN A , ZHANG S H , et al. Bayesian approach and time series dimensionality reduction to LSTM-based model-building for fault diagnosis of a reciprocating compressor[J]. Neurocomputing, 2020, 380 (C): 51- 66.
|
28 |
GIANCARLO Z , KARIM R . Deep learning with TensorFlow[M]. 2nd ed (photocopy edition) Nanjing: Southeast University press, 2019: 260- 297.
|
29 |
陈强. 高级计量经济学及Stata应用[M]. 2版 北京: 高等教育出版社, 2018: 246- 247.
|
|
CHEN Q . Advanced econometrics and stata applications[M]. 2nd ed Beijing: Higher Education Press, 2018: 246- 247.
|
30 |
DAGUM E B . International encyclopedia of the social & behavioral sciences[M]. 2nd ed America: Pergamon, 2015: 347- 353.
|