1 |
HOSSENI S , BARKER K , RAMIREZ-MARQUEZ J E . A review of definitions and measures of system resilience[J]. Reliability Engineering and System Safety, 2016, (145): 47- 61.
|
2 |
RIOLLI L , SAVICKI V . Information system organizational resilience[J]. Omega, 2003, 31 (3): 227- 233.
doi: 10.1016/S0305-0483(03)00023-9
|
3 |
HOLLNAGEL E , WOODS D D , LEVESON N . Resilience engineering: concepts and precepts[M]. Florida: CRC Press, 2006.
|
4 |
YOUN B D, HU C, WANG P. Resilience-driven system design of complex engineered systems[C]//Proc.of the 37th Design Automation Conference, Part A and B, 2011.
|
5 |
AARON G. Creating supply chain resilience with information communication technology[D]. Texas: University of North Texas, 2018.
|
6 |
杨拥民, 钱彦岭, 李磊, 等. 装备维修保障信息化体系结构设计概论[M]. 北京: 国防工业出版社, 2012.
|
|
YANG Y M , QIAN Y L , LI L , et al. An introduction to the information system of system structure of equipment maintenance support[M]. Beijing: National Defence Industry Press, 2012.
|
7 |
周林, 赵杰, 冯广飞. 装备故障预测与健康管理技术[M]. 北京: 国防工业出版社, 2015.
|
|
ZHOU L , ZHAO J , FENG G F . Equipment failure prediction and health management technology[M]. Beijing: National Defence Industry Press, 2015.
|
8 |
XUE D, EL-FARRA N H. Analysis and accommodation of communication failures in event-triggered networked distributed control systems[C]//Proc.of the American Control Conference, 2017: 1815-1820.
|
9 |
张宝珍. 国外综合诊断、预测与健康管理技术的发展及应用[J]. 计算机测量与控制, 2008, 16 (5): 591- 594.
|
|
ZHANG B Z . Development and applications of integrated diagnostics, prognostics and health management technologies of abroad[J]. Computer Measurement & Control, 2008, 16 (5): 591- 594.
|
10 |
张侃, 刘宝平, 黄栋. 精英遗传改进的非线性灰色神经网络算子与军费开支多目标组合预测应用[J]. 系统工程与电子技术, 2018, 40 (5): 1070- 1078.
|
|
ZHANG K , LIU B P , HUANG D . Elite genetic improved nonlinear gray neural network operator and military expenditure multi-objective combination forecasting application[J]. Systems Engineering and Electronics, 2018, 40 (5): 1070- 1078.
|
11 |
RIVEST F , KOHAR R . A new timing error cost function for binary time series prediction[J]. IEEE Trans.on Neural Networks and Learning Systems, 2020, 31 (1): 174- 185.
doi: 10.1109/TNNLS.2019.2900046
|
12 |
王亚男, 雷英杰, 王毅, 等. 基于直觉模糊推理的直觉模糊时间序列模型[J]. 系统工程与电子技术, 2016, 38 (6): 1332- 1338.
|
|
WANG Y N , LEI Y J , WANG Y , et al. Intuitionistic fuzzy time series model based on intuitionistic fuzzy reasoning[J]. Systems Engineering and Electronics, 2016, 38 (6): 1332- 1338.
|
13 |
LU Y . A simple parameter-driven binary time series model[J]. Journal of Forecasting, 2020, 39 (2): 187- 199.
|
14 |
LI S Y , ZHUANG J , SHEN S F . Dynamic forecasting conditional probability of bombing attacks based on time-series and intervention analysis[J]. Risk Analysis, 2017, 37 (7): 1287- 1297.
doi: 10.1111/risa.12679
|
15 |
张熙来, 赵俭辉, 蔡波. 针对PM2.5单时间序列数据的动态调整预测模型[J]. 自动化学报, 2018, 44 (10): 1790- 1798.
|
|
ZHANG X L , ZHAO J H , CAI B . Prediction model with dynamic adjustment for single time series of PM2.5[J]. Acta Automatica Sinica, 2018, 44 (10): 1790- 1798.
|
16 |
黎锁平, 刘坤会. 动态指数平滑优化模型及其应用[J]. 系统工程学报, 2003, 18 (2): 163- 167.
doi: 10.3969/j.issn.1000-5781.2003.02.012
|
|
LI S P , LIU K H . Optimized dynamic exponential smoothing model and its applications[J]. Journal of Systems Engineering, 2003, 18 (2): 163- 167.
doi: 10.3969/j.issn.1000-5781.2003.02.012
|
17 |
BARNARD G A . New methods of quality control[J]. Journal of the Royal Statistical Society, Series A (General), 1963, 126 (2): 255- 258.
doi: 10.2307/2982365
|
18 |
BATES J M , GRANGER C W J . The combination of forecasts[J]. Journal of the Operational Research Society, 1969, 20 (4): 451- 468.
doi: 10.1057/jors.1969.103
|
19 |
魏东涛, 张军凯, 朱倩, 等. 用组合模型预测备件消耗量[J]. 火力与指挥控制, 2016, 41 (9): 170- 172.
doi: 10.3969/j.issn.1002-0640.2016.09.038
|
|
WEI D T , ZHANG J K , ZHU Q , et al. A combined model to prediction spare parts consumption[J]. Fire Control & Command Control, 2016, 41 (9): 170- 172.
doi: 10.3969/j.issn.1002-0640.2016.09.038
|
20 |
MENDES D T , LUIZ C O F . Improving time series forecasting: an approach combining bootstrap aggregation, clusters and exponential smoothing[J]. International Journal of Forecasting, 2018, 34 (4): 748- 761.
doi: 10.1016/j.ijforecast.2018.05.006
|
21 |
BUI G C, ANH D T. An application of similarity search in streaming time series under DTW: online forecasting[C]//Proc.of the 8th International Symposium on Information and Communication Technology, 2017: 10-17.
|
22 |
SOARES E , COSTA P , COSTA B , et al. Ensemble of evolv-ing data clouds and fuzzy models for weather time series prediction[J]. Applied Soft Computing, 2018, 64, 445- 453.
doi: 10.1016/j.asoc.2017.12.032
|
23 |
ZHANG R T, ZOU Q. Time series prediction and anomaly detection of light curve using LSTM neural network[C]//Proc.of the 2nd International Conference on Artificial Intelligence, Automation and Control Technologies, 2018, 1061: 012012.
|
24 |
RIVEST F , KOHAR R . A new timing error cost function for binary time series prediction[J]. IEEE Trans.on Neural Networks and Learning Systems, 2020, 31 (1): 174- 185.
doi: 10.1109/TNNLS.2019.2900046
|
25 |
NIU T , ZHANG L , WEI S J , et al. Study on a combined prediction method based on BP neural network and improved verhulst model[J]. Systems Science & Control Engineering, 2019, 7 (3): 36- 42.
|
26 |
SEPP H , JURGEN S . Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
27 |
Jaeger H. The "echo state" approach to analysing and training recurrent neural networks-with an erratum note[R]. Fraunhofer Institute for Autonomous Intelligent Systems, 2010.
|
28 |
ZACHARIAH C, HUMZA S, DHIREESHA K. Analysis of wide and deep echo state networks for multiscale spatiotemporal time series forecasting[C]//Proc.of the 7th Annual Neuro-inspired Computational Elements Workshop, 2019.
|
29 |
HARVEY A C . Arima models[M]. London: Palgrave Macmillan, 2018.
|
30 |
RAHMAN A , HASAN M M . Modeling and forecasting of carbon dioxide emissions in bangladesh using autoregressive integrated moving average (ARIMA) models[J]. Open Journal of Statistics, 2017, 7 (4): 560- 566.
doi: 10.4236/ojs.2017.74038
|
31 |
LIU C, HOI S C H, ZHAO P, et al. Online ARIMA algorithms for time series prediction[C]//Proc.of the 30th AAAI Conference on Artificial Intelligence, 2016: 1867-1873.
|
32 |
HUA Z Q , XUE D M . ARIMA based time series forecasting model[J]. Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering), 2016, 9 (2): 93- 98.
|
33 |
PERERIA E N , SCARPIN C T , LUIZ A T J . Time series forecasting by using a neural ARIMA model based on wavelet decomposition[J]. Independent Journal of Management & Production, 2016, 7 (1): 252- 270.
|