1 |
FOSSEN T, PETTERSEN K, NIJMEJIER H. Sensing and control for autonomous vehicles[M]. Switzerland: Springer, 2017.
|
2 |
STENERSEN T. Guidance system for autonomous surface vehi cles[D]. Trondheim: Norwegian University of Science and Technology, 2015.
|
3 |
HUANG Y M , CHEN L Y , VAN G P . Generalized velocity obstacle algorithm for preventing ship collisions at sea[J]. Ocean Engineering, 2019, 173, 142- 156.
doi: 10.1016/j.oceaneng.2018.12.053
|
4 |
KUWATA Y , WOLF M T , ZARZHITSKY D , et al. Safe mari- time autonomous navigation with COLREGS, using velocity obstacles[J]. IEEE Journal of Oceanic Engineering, 2014, 39 (1): 110- 119.
doi: 10.1109/JOE.2013.2254214
|
5 |
ERIKSEN B H, BREIVIK M. MPC-based mid-level collision avoidance for ASVs using nonlinear programming[C]//Proc.of the IEEE Conference on Control Technology and Applications, 2017: 766-772.
|
6 |
HAGEN I B, KUFOALOR D K M, BREKKE E F, et al. MPC-based collision avoidance Strategy for existing marine vessel guidance systems[C]//Proc.of the IEEE International Confe-rence on Robotics and Automation, 2018: 7618-7623.
|
7 |
ERIKSEN B H , BREIVIK M , WILTHIL E F , et al. The branc-hing-course MPC algorithm for ma ritime collision avoidance[J]. Journal of Field Robotics, 2019, 36 (7): 1222- 1249.
doi: 10.1002/rob.21900
|
8 |
HUANG Y M , CHEN L Y , CHEN P F , et al. Ship collision avoidance methods: State-of-the-art[J]. Safety science, 2020, 121, 451- 473.
doi: 10.1016/j.ssci.2019.09.018
|
9 |
CHIANG H T L , TAPIA L . COLREG-RRT: an RRT-based COLREGS-compliant motion planner for surface vehicle navigation[J]. IEEE Robotics and Automation Letters, 2018, 3 (3): 2024- 2031.
doi: 10.1109/LRA.2018.2801881
|
10 |
ERIKSEN B H, BREIVIK M, PETTERSEN K Y, et al. A modified dynamic window algorithm for horizontal collision avoidance for AUVs[C]//Proc.of the IEEE Conference on Control Applications, 2016: 499-506.
|
11 |
LIN X G, FU Y. Research of USV obstacle avoidance strategy based on dynamic window[C]//Proc.of the IEEE International Conference on Mechatronics and Automation, 2017: 1410-1415.
|
12 |
SONG A L , SU B Y , DONG C Z , et al. A two-level dynamic obstacle avoidance algorithm for unmanned surface vehicles[J]. Ocean Engineering, 2018, 170, 351- 360.
doi: 10.1016/j.oceaneng.2018.10.008
|
13 |
LYU H G , YIN Y . COLREGS-constrained real-time path planning for autonomous ships using modified artificial potential fields[J]. The Journal of Navigation, 2019, 72 (3): 588- 608.
doi: 10.1017/S0373463318000796
|
14 |
WOERNER K, NOVITZKY M. Legibility and predictability of protocol-constrained motion: evaluating human-robot ship interactions under COLREGS collision av oidance requirements[C]//Proc.of the Robotics: Science and Systems, 2017.
|
15 |
WANG Y L , YU X M , LIANG X , et al. A COLREGs-based obstacle avoidance approach for unmanned surface vehicles[J]. Ocean Engineering, 2018, 169, 110- 124.
doi: 10.1016/j.oceaneng.2018.09.012
|
16 |
ZHAO L M , ROH M I . COLREGs-compliant multiship collision avoidance based on deep reinforcement learning[J]. Ocean Engineering, 2019, 191, 106436.
doi: 10.1016/j.oceaneng.2019.106436
|
17 |
FUAT B , TULAY Y . COLREGS based path planning and bearing only obstacle avoidance for autonomous unmanned surface ve hicles[J]. Procedia Computer Science, 2018, 131, 633- 640.
doi: 10.1016/j.procs.2018.04.306
|
18 |
蒲华燕, 丁峰, 李小毛, 等. 基于椭圆碰撞锥的无人艇动态避障方法[J]. 仪器仪表学报, 2017, 38 (7): 1756- 1762.
doi: 10.3969/j.issn.0254-3087.2017.07.024
|
|
PU H Y , DING F , LI X M , et al. Maritime autonomous obstacle avoidance in a dynamic environment based on collision cone of ellipse[J]. Chinese Journall of Scientifice Instrument, 2017, 38 (7): 1756- 1762.
doi: 10.3969/j.issn.0254-3087.2017.07.024
|
19 |
LI Q H. Digital sonar design in underwater acoustics: principles and applications[M]. Berlin: Springer, 2012.
|
20 |
奚畅, 蔡志明, 袁骏. 利用拖线阵运动特性的阵形估计方法[J]. 应用声学, 2019, 38 (5): 837- 844.
|
|
XI C , CAI Z M , YUAN J . Towed linear array shape estimation using array motion characteristics[J]. Journal of Applied Acoustics, 2019, 38 (5): 837- 844.
|
21 |
LI C Y , JIANG J J , DUAN F J , et al. Towed array shape estimation based on single or double near-field calibrating sources[J]. Circuits Systems & Signal Processing, 2019, 38, 153- 172.
|
22 |
SU Q , SHEN Y H , JIAN W . Underdetermined blind identification for uniform linear array by a new time-frequency method[J]. Circuits System Signal Process, 2017, 36 (1): 99- 118.
doi: 10.1007/s00034-016-0292-9
|
23 |
高守勇, 邱秀分, 申和平, 等. 大孔径光纤拖曳阵阵形畸变对波束零陷的影响[J]. 舰船电子工程, 2016, 36 (8): 165- 169.
doi: 10.3969/j.issn.1672-9730.2016.08.041
|
|
GAO S Y , QIU X F , SHEN H P , et al. Influence of shape distortion of large-aperture optical fibre towed array on null-form- ing[J]. Ship Electronic Engineering, 2016, 36 (8): 165- 169.
doi: 10.3969/j.issn.1672-9730.2016.08.041
|
24 |
ABLOW C M , SCHECHTER S . Numerical simulation of undersea cable dynamics[J]. Ocean Engineering, 1983, 10 (6): 443- 457.
doi: 10.1016/0029-8018(83)90046-X
|
25 |
HAMZAH A, AHMAD N F M, NUR N A, et al. Analysis of mobile robot path planning with artificial potential fields: me-thods and protocols[C]//Proc.of the 10th National Technical Seminar on Underwater System Technology 2018, 2019, 538: 181-196.
|
26 |
ZHOU Z Y , WANG J J , ZHU Z F , et al. Tangent navigated robot path planning strategy using particle swarm optimized artificial potential field[J]. Optik, 2018, 158, 639- 651.
doi: 10.1016/j.ijleo.2017.12.169
|
27 |
SEMSAR-KAZEROONI E , ELFERINK K , PLOEG J , et al. Multi-objective platoon maneuvering using artificial potential fields[J]. IFAC Papersonline, 2017, 50 (1): 15006- 15011.
doi: 10.1016/j.ifacol.2017.08.2570
|
28 |
LAZAROWSKA A . Discrete artificial potential field approach to mobile robot path planning[J]. Ifac Pa personline, 2019, 52 (8): 277- 282.
doi: 10.1016/j.ifacol.2019.08.083
|
29 |
FU M Y , WANG S S , WANG Y H . Multi-behavior fusion based potential field method for path planning of unmanned surface vessel[J]. China Ocean Engineering, 2019, 33 (5): 583- 592.
doi: 10.1007/s13344-019-0056-y
|