系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (9): 1961-1968.doi: 10.3969/j.issn.1001-506X.2020.09.11

• 传感器与信号处理 • 上一篇    下一篇

发射站/接收站位置误差下无源雷达DOA-TDOA目标定位算法

黄东华(), 赵勇胜(), 赵拥军()   

  1. 信息工程大学数据与目标工程学院, 河南 郑州 450001
  • 收稿日期:2019-11-15 出版日期:2020-08-26 发布日期:2020-08-26
  • 作者简介:黄东华 (1982-),女,讲师,博士研究生,主要研究方向为信号分析与处理、无源定位。E-mail:donghua0928@163.com|赵勇胜 (1990-),男,博士研究生,主要研究方向为无源雷达信号处理。E-mail:ethanchioa@aliyun.com|赵拥军 (1964-),男,教授,博士研究生导师,博士,主要研究方向为雷达信号处理。E-mail:zhaoyongjuntg@126.com
  • 基金资助:
    国家自然科学基金(61703433);河南省科技攻关项目(192102210095)

Target localization algorithm from DOA-TDOA measurements in passive radar with transmitter and receiver position errors

Donghua HUANG(), Yongsheng ZHAO(), Yongjun ZHAO()   

  1. School of Data and Target Engineering, Information Engineering University, Zhengzhou 450001, China
  • Received:2019-11-15 Online:2020-08-26 Published:2020-08-26

摘要:

无源雷达中发射站和接收站位置误差的存在将显著降低目标定位精度。针对这一问题,将发射站和接收站位置误差考虑到基于波达方向和到达时差的无源雷达目标定位模型中,提出了一种目标位置代数解算法。首先,将波达方向和到达时差的测量方程线性化,考虑方程中的各项误差,采用加权最小二乘估计求解,并通过对加权矩阵的迭代更新,得到目标位置最优估计。推导了存在发射站和接收站位置误差条件下目标定位的克拉美罗下界,并从理论上证明了算法的定位精度可以达到克拉美罗下界。仿真结果表明,算法的定位精度优于现有算法,在发射站和接收站位置误差条件下定位精度仍能达到克拉美罗下界。

关键词: 无源雷达, 波达方向, 到达时差, 位置误差, 加权最小二乘

Abstract:

In the passive radar system, the existence of transmitter and receiver position errors will significantly reduce the target localization accuracy. In this paper, the transmitter and receiver position errors are considered in the passive rodar target localization model based on direction of arrival (DOA) and time difference of arrival (TDOA) measurements. An algebraic solution is proposed for target position estimation. Firstly, the DOA and TDOA measurement equations are linearized, and then by considering the errors in the location equations, the weighted least squares estimation is employed to solve the equations. By iteratively updating the weighted matrix, the optimum estimation of the target position can be obtained. The Cramer-Rao lower bound (CRLB) for DOA-TDOA-based target localization with transmitter and receiver position errors is derived, and the theoretical localization accuracy is shown analytically to achieve the CRLB. Simulation results demonstrate that the proposed solution outperforms existing algorithms in terms of localization accuracy, and achieves the CRLB even in the presence of transmitter and receiver position errors.

Key words: passive radar, direction of arrival (DOA), time difference of arrival (TDOA), position error, weighted least squares (WLS)

中图分类号: