1 |
吉根林, 赵斌. 时空轨迹大数据模式挖掘研究进展[J]. 数据采集与处理, 2015, 30 (1): 47- 58.
doi: 10.16337/j.1004-9037.2015.01.004
|
|
JI G L , ZHAO B . Research progress in big data pattern mining for spatio-temporal trajectories[J]. Journal of Data Acquisition and Progressing, 2015, 30 (1): 47- 58.
doi: 10.16337/j.1004-9037.2015.01.004
|
2 |
毛嘉莉, 金澈清, 章志刚. 轨迹大数据异常检测:研究进展及系统框架[J]. 软件学报, 2017, 28 (1): 17- 34.
doi: 10.13328/j.cnki.j0s.005151
|
|
MAO J L , JIN C Q , ZHANG Z G . Abnormal detection for tra-jectory big data: advancements and framework[J]. Journal of Software, 2017, 28 (1): 17- 34.
doi: 10.13328/j.cnki.j0s.005151
|
3 |
SAN R I , MARTIN D I , CRISTINA C , et al. Outlier trajectory detection through a context-aware distance[J]. Pattern Analysis and Applications, 2019, 22, 831- 839.
doi: 10.1007/s10044-018-0732-1
|
4 |
SHARIF M , ALESHEIKH A A . Context-awareness in similarity measures and pattern discoveries of trajectories: a context-based dynamic time warping method[J]. GIScience & Remote Sensing, 2017, 54 (3): 426- 452.
doi: 10.1080/15481603.2017.1278644
|
5 |
ALI A R , SHARIF M , CHEHREGHAN A . A method for similarity measurement in spatial trajectories[J]. Spatial Information Research, 2017, 25 (3): 491- 500.
doi: 10.1007/s41324-017-0115-5
|
6 |
ZHANG D Z , LEE K , LEE I . Semantic periodic pattern mining from spatio-temporal trajectories[J]. Information Sciences, 2019, 502, 162- 189.
|
7 |
ZHANG D Z , LEE K , LEE I . Mining hierarchical semantic periodic patterns from GPS-collected spatio-temporal trajectories[J]. Expert Systems with Applications, 2019, 122, 85- 101.
|
8 |
黄亚锋, 邢峰, 张航峰, 等. 基于语义轨迹模型的态势评估方法研究[J]. 中国电子科学研究院学报, 2019, 14 (3): 243- 250.
|
|
HUANG Y F , XING F , ZHANG H F , et al. Research on situa-tion assessment method based on semantic trajectory model[J]. Journal of China Academy of Electronic Sciences, 2019, 14 (3): 243- 250.
|
9 |
LEE I , CAI G , LEE K . Exploration of geo-tagged photos through data mining approaches[J]. Expert Systems with Applications, 2014, 41 (2): 397- 405.
|
10 |
CAI G C, LEE K J, LEE I. A framework for mining semantic level tourist movement behaviors from geo-tagged photos[C]//Proc.of the 29th Australasian Joint Conference in AI, 2016: 519-524.
|
11 |
CAI G C , LEE K J , LEE I . Itinerary recommender system with semantic trajectory pattern mining from geo-tagged photos[J]. Expert Systems with Applications, 2018, 94, 32- 40.
|
12 |
CAI G C , LEE K J , LEE I . Mining semantic trajectory patterns from geo-tagged data[J]. Journal of Computer Science and Technology, 2018, 33 (4): 849- 862.
|
13 |
章静蕾, 石海龙, 崔莉. 基于出行方式及语义轨迹的位置预测模型[J]. 计算机研究与发展, 2019, 56 (7): 1357- 1369.
|
|
ZHANG J L , SHI H L , CUI L . Location prediction model based on travel mode and semantic trajectory[J]. Computer Research and Development, 2019, 56 (7): 1357- 1369.
|
14 |
姚迪, 张超, 黄建辉, 等. 时空数据语义理解:技术与应用[J]. 软件学报, 2018, 29 (7): 2018- 2045.
doi: 10.13328/j.cnki.jos.005576
|
|
YAO D , ZHANG C , HUANG J H , et al. Semantic understanding of spatio-temporal data: technology & application[J]. Journal of Software, 2018, 29 (7): 2018- 2045.
doi: 10.13328/j.cnki.jos.005576
|
15 |
PATHAK G, TIWARI S, MADRIA S K. Generalized distance metric as a robust similarity measure for mobile object trajectories[C]//Proc.of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, 2006: 160-167.
|
16 |
BOMBELLI A , SOLER L , MEASE K D . Strategic air traffic planning with frechet distance aggregation and rerouting[J]. Journal of Guidance Control Dynamics, 2017, 40 (5): 1117- 1129.
|
17 |
YU Q Y , LUO Y L , CHEN C , et al. Trajectory outlier detection approach based on common slices sub-sequence[J]. Applied Intelligence, 2018, 48 (9): 2661- 2680.
|
18 |
HO S S , DAI P , RUDZICZ F . Manifold learning for multiva-riate variable-length sequences with an application to similarity search[J]. IEEE Trans.on Neural Networks & Learning Systems, 2015, 27 (6): 1333- 1344.
doi: 10.1109/TNNLS.2015.2399102
|
19 |
CHEN Y J, SHEN H, TIAN H. Clustering subtrajectories of moving objects based on a distance metric with multi-dimensional weights[C]//Proc.of the IEEE 6th International Symposium on Parallel Architectures, Algorithms and Programming, 2014: 203-208.
|
20 |
刘宇, 王前东. 基于最长公共子序列的非同步相似轨迹判断[J]. 电讯技术, 2017, 57 (10): 1165- 1170.
doi: 10.3969/j.issn.1001-893x.2017.10.011
|
|
LIU Y , WANG Q D . Asynchronous similar trajectory judgment based on the longest common subsequence[J]. Telecommunication Technology, 2017, 57 (10): 1165- 1170.
doi: 10.3969/j.issn.1001-893x.2017.10.011
|
21 |
DEEPAK P , DESHPANDE P M . Advanced operators for similarity search[M]. Bangalore: Springer, 2015.
|
22 |
SHI Y, ZHANG A. A shrinking-based dimension reduction approach for multi-dimensional analysis[C]//Proc.of the IEEE 16th International Conference on Scientific and Statistical Database Management, 2004: 427-434.
|
23 |
SHI Y, GRAHAM B. A similarity search approach to solving the multi-query problems[C]//Proc.of the IEEE/ACIS International Conference on Computer & Information Science, 2012: 237-242.
|
24 |
SHI Y, GRAHAM B. Similarity search problem research on multi-dimensional data sets[C]//Proc.of the 10th International Confe-rence on Information Technology: New Generation, 2013.
|
25 |
GUPTA S, DWIVEDI A, ISAC R K, et al. EKSS: an efficient approach for similarity search[C]//Proc.of the IEEE International Conference on Communication, Information & Computing Technology, 2012.
|
26 |
GUPTA S, DWIVEDI A, ISSAC R K, et al. An efficient similarity search approach to incremental multidimensional data in presence of obstacles[C]//Proc.of the International Conference on Frontiers of Intelligent Computing: Theory and Applications, 2013: 93-101.
|
27 |
LI Z J, JIAN X, LIAN X, et al. An efficient probabilistic approach for graph similarity search[C]//Proc.of the IEEE 34th International Conference on Data Engineering, 2018: 533-544.
|
28 |
VLACHOS M, GUNOPULOS D, KOLLIOS G. Robust similarity measures for mobile object trajectories[C]//Proc.of the 13th International Workshop on Database and Expert Systems Applications, 2002.
|
29 |
DURAJ L , KUNNEMANN M , POLAK A . Tight conditional lower bounds for longest common increasing subsequence[J]. Algorithmica, 2019, 81 (10): 3968- 3992.
|