1 |
HINTON G E , SALAKHUTDINOV R R . Reducing the dimensionality of data with neural network[J]. Science, 2006, 313 (5786): 504- 507.
|
2 |
周奇才, 刘星辰, 赵炯, 等. 旋转机械一维深度卷积神经网络故障诊断研究[J]. 振动与冲击, 2018, 37 (23): 31- 37.
|
|
ZHOU Q C , LIU X C , ZHAO J , et al. Fault diagnosis for rotating machinery based on 1D depth convolutional neural network[J]. Journal of Vibration and Shock, 2018, 37 (23): 31- 37.
|
3 |
赵春华, 胡恒星, 陈保家, 等. 基于深度学习特征提取和WOA-SVM状态识别的轴承故障诊断[J]. 振动与冲击, 2019, 38 (10): 31- 37, 48.
|
|
ZHAO C H , HU H X , CHEN B J , et al. Bearing fault diagnosis based on deep learning feature extraction and WOA-SVM state recognition[J]. Journal of Vibration and Shock, 2019, 38 (10): 31- 37, 48.
|
4 |
SHAO H D , JIANG H K , ZHAO H W , et al. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis[J]. Mechanical Systems & Signal Processing, 2017, 95, 187- 204.
|
5 |
曲建岭, 余路, 袁涛, 等. 基于卷积神经网络的层级化智能故障诊断算法[J]. 控制与决策, 2019, 34 (12): 2619- 2626.
|
|
QU J L , YU L , YUAN T , et al. A hierarchical intelligent fault diagnosis algorithm based on convolutional neural network[J]. Control and Decision, 2019, 34 (12): 2619- 2626.
|
6 |
FENG J , LEI Y G , LIN J , et al. Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems & Signal Processing, 2016, 72/73, 303- 315.
|
7 |
LU C , WANG Z Y , QIN W L , et al. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]. Signal Processing, 2017, 130, 377- 388.
|
8 |
GAN M , WANG C , ZHU C A . Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings[J]. Mechanical Systems & Signal Processing, 2016, 72/73, 92- 104.
|
9 |
任浩, 屈剑锋, 柴毅, 等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32 (8): 345- 358.
|
|
REN H , QU J F , CHAI Y , et al. Deep learning for fault diagnosis: The state of the art and challenge[J]. Control and Decision, 2017, 32 (8): 345- 358.
|
10 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25 (2): 1097- 1105.
|
11 |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
|
12 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc.of the Computer Vision and Pattern Recognition, 2016: 770-778.
|
13 |
CHEN Z Q , LI C , SANCHEZ R V . Gearbox fault identification and classification with convolutional neural networks[J]. Shock and Vibration, 2015, (2): 390134.
|
14 |
ZHANG W, PENG G L, LI C H. Rolling element bearings fault intelligent diagnosis based on convolutional neural networks using raw sensing signal[C]//Proc.of the 12th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2017: 77-84.
|
15 |
INCE T , KIRANYAZ S , EREN L , et al. Real-time motor fault detection by 1D convolutional neural networks[J]. IEEE Trans.on Industrial Electronics, 2016, 63 (11): 7067- 7075.
doi: 10.1109/TIE.2016.2582729
|
16 |
吴春志, 江鹏程, 冯辅周, 等. 基于一维卷积神经网络的齿轮箱故障诊断[J]. 振动与冲击, 2018, 37 (22): 51- 56.
|
|
WU C Z , JIANG P C , FENG F Z , et al. Faults diagnosis method for gearboxes based on a 1-D convolutional neural network[J]. Journal of Vibration and Shock, 2018, 37 (22): 51- 56.
|
17 |
朱会杰, 王新晴, 芮挺, 等. 基于平移不变CNN的机械故障诊断研究[J]. 振动与冲击, 2019, 38 (5): 45- 52.
|
|
ZHU H J , WANG X Q , RUI T , et al. Machinery fault diagnosis based on shift invariant CNN[J]. Journal of Vibration and Shock, 2019, 38 (5): 45- 52.
|
18 |
CANDES E J. Compressive sampling[C]//Proc.of International Congress of Mathematics, 2006, 3: 1433-1452.
|
19 |
CANDÈS E J , TAO T . Decoding by linear programming[J]. IEEE Trans.on Information Theory, 2005, 51 (12): 4203- 4215.
|
20 |
DONOHO D L . Compressed sensing[J]. IEEE Trans.on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582
|
21 |
TROPP J A , GILBERT A C . Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans.on Information Theory, 2007, 53 (12): 4655- 4666.
|
22 |
ZHANG X P , HU N Q , HU L , et al. A bearing fault diagnosis method based on the low dimensional compressed vibration signal[J]. Advances in Mechanical Engineering, 2015, 7 (7): 1- 12.
|
23 |
WANG Y X , XIANG J W , MO Q Y , et al. Compressed sparse time-frequency feature representation via compressive sensing and its applications in fault diagnosis[J]. Measurement, 2015, 68, 70- 81.
|
24 |
TANG G , HOU W , WANG H Q , et al. Compressive sensing of roller bearing faults via harmonic detection from under-sampled vibration signals[J]. sensors, 2015, 15 (10): 25648- 25662.
|
25 |
温江涛, 闫常弘, 孙洁娣, 等. 基于压缩采样与深度学习的轴承故障诊断方法[J]. 仪器仪表学报, 2018, 39 (1): 171- 179.
|
|
WEN J T , YAN C H , SUN J D , et al. Bearing fault diagnosis method based on compressed acquisition and deep learning[J]. Chinese Journal of Scientific Instrument, 2018, 39 (1): 171- 179.
|
26 |
MA Y F , JIA X S , BAI H J , et al. A new fault diagnosis method based on convolutional neural network and compressive sensing[J]. Journal of Mechanical Science and Technology, 2019, 33, 5177- 5188.
|
27 |
LECUN Y , BOTTOU L , BENGIO Y , et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324.
|
28 |
方开泰, 刘民千, 周永道. 试验设计与建模[M]. 北京: 高等教育出版社, 2011: 81- 114.
|
|
FANG K T , LIU M Q , ZHOU Y D . Design and modeling of experiments[M]. Beijing: Higher Education Press, 2011: 81- 114.
|
29 |
张新峰, 焦月, 李欢欢, 等. 基于粒子群算法的Universum SVM参数选择[J]. 北京工业大学学报, 2013, 39 (6): 840- 845.
|
|
ZHANG X F , JIAO Y , LI H H , et al. Model paremeter selection of the universum SVM based on particle swarm optimazation[J]. Journal of Beijing University of Technology, 2013, 39 (6): 840- 845.
|
30 |
COELLO C A C , PULIDO T G , LECHUGA M S . Handling multiple objectives with particle swarm optimization[J]. Evolutionary Computation, 2004, 8 (3): 256- 279.
|