系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (9): 1903-1910.doi: 10.3969/j.issn.1001-506X.2020.09.04

• 电子技术 • 上一篇    下一篇

基于级联卷积神经网络的港口多方向舰船检测与分类

孙嘉赤(), 邹焕新*(), 邓志鹏(), 李美霖(), 曹旭(), 马倩()   

  1. 国防科技大学电子科学学院, 湖南 长沙 410073
  • 收稿日期:2019-09-20 出版日期:2020-08-26 发布日期:2020-08-26
  • 通讯作者: 邹焕新 E-mail:s.jcsome@gmail.com;hxzou2008@163.com;dzp_whu@163.com;summit_mll@qq.com;1135459767@qq.com;2233809618@qq.com
  • 作者简介:孙嘉赤(1996-),男,硕士研究生,主要研究方向为高分辨率光学遥感图像舰船目标检测。E-mail:s.jcsome@gmail.com|邓志鹏(1990-),男,博士研究生,主要研究方向为计算机视觉、图像处理、模式识别等。E-mail:dzp_whu@163.com|李美霖(1995-),女,硕士研究生,主要研究方向为极化SAR图像地物分类、模式识别。E-mail:summit_mll@qq.com|曹旭(1996-),男,硕士研究生,主要研究方向为SAR图像和光学图像目标检测分类与识别。E-mail:1135459767@qq.com|马倩(1996-),女,硕士研究生,主要研究方向为多源遥感数据变化检测。E-mail:2233809618@qq.com
  • 基金资助:
    国家自然科学基金(61331015)

Oriented inshore ship detection and classification based on cascade RCNN

Jiachi SUN(), Huanxin ZOU*(), Zhipeng DENG(), Meilin LI(), Xu CAO(), Qian MA()   

  1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
  • Received:2019-09-20 Online:2020-08-26 Published:2020-08-26
  • Contact: Huanxin ZOU E-mail:s.jcsome@gmail.com;hxzou2008@163.com;dzp_whu@163.com;summit_mll@qq.com;1135459767@qq.com;2233809618@qq.com

摘要:

港口舰船目标自动检测的定位和类型分类是一个重要而具有挑战性的问题。针对高分辨率光学遥感影像中多方向性排列密集的近岸舰船目标定位和识别困难的问题,提出基于级联区域卷积神经网络和手工提取特征相结合的近岸舰船检测识别框架。首先,使用级联的区域卷积神经网络对舰船位置进行粗定位并对类别进行估计,得到一系列粗定位的垂直预测框。然后,设计一个可以准确定位舰船的斜框旋转回归器,其将第一阶段所得粗定位垂直矩形框转变为带方向的斜矩形框。最后,使用非极大值抑制的方法去除冗余的预测框。实验采用谷歌地球上采集的数据集进行训练和预测,实验结果表明所提算法在精准率和召回率上均具有较大优势。

关键词: 港口舰船检测, 斜框标注, 舰船分类, Canny边缘检测, Hough直线检测

Abstract:

Automatic inshore ship recognition, including target localization and type classification, is an important and challenging problem. However, arbitrarily rotated ships are always moored inshore densely. This makes it very difficult to recognize and locate ship targets. To resolve this problem, a multiclass oriented ship localization and recognition framework is proposed based on a cascade region convolutional neural network (RCNN) and feature designed manually. Firstly, cascade RCNN is adopted to localize and classify the positive regions of ships-a set of bounding boxes (BBox). Secondly, a novel procedure which transforms a bounding box to a rotated bounding box is designed and applied to each BBox. Finally, non-maximum suppression (NMS) is adopted to remove the redundant rotated BBoxes (RBoxes). Extensive experimental results conducted on the dataset collected from Google Earth demonstrate the effectiveness of the proposed approach, compared to the other approaches.

Key words: inshore ship detection, rotated bounding box annotation, ship classification, Canny edge detection, Hough line detection

中图分类号: