1 |
李晓斌, 江碧涛, 杨渊博, 等. 光学遥感图像目标检测技术综述[J]. 航天返回与遥感, 2019, 40 (4): 95- 104.
|
|
LI X B , JIANG B T , YANG Y B , et al. A survey on object detection technology in optical remote sensing images[J]. Spacecraft Recovery & Remote Sensing, 2019, 40 (4): 95- 104.
|
2 |
LIU Z K , WANG H Z , WENG L B , et al. Ship rotated bound-ing box space for ship extraction from high-resolution optical satellite images with complex backgrounds[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (8): 1074- 1078.
doi: 10.1109/LGRS.2016.2565705
|
3 |
MA L, GUO J, WANG Y Q, et al. Ship detection by salient convex boundaries[C]//Proc.of the International Congress on Image and Signal Processing, 2010: 202-205.
|
4 |
LIU G , ZHANG Y S , ZHENG X W , et al. A new method on inshore ship detection in high-resolution satellite images using shape and context information[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (3): 617- 621.
doi: 10.1109/LGRS.2013.2272492
|
5 |
LI S , ZHOU Z Q , WANG B , et al. A novel inshore ship detection via ship head classification and body boundary determination[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (12): 1920- 1924.
doi: 10.1109/LGRS.2016.2618385
|
6 |
刘松涛, 姜康辉, 刘振兴. 基于区域协方差和目标度的航空侦察图像舰船目标检测[J]. 系统工程与电子技术, 2019, 41 (5): 972- 980.
|
|
LIU S T , JIANG K H , LIU Z X , et al. Ship target detection of aerial reconnaissance image based on region covariance and objectness[J]. Systems Engineering and Electronics, 2019, 41 (5): 972- 980.
|
7 |
YANG F , XU Q Z , LI B , et al. Ship detection from optical sate-llite images based on saliency segmentation and structure-LBP feature[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (5): 602- 606.
doi: 10.1109/LGRS.2017.2664118
|
8 |
黎经元, 厉小润, 赵辽英. 基于边缘线分析与聚合通道特征的港口舰船检测[J]. 光学学报, 2019, 39 (8): 225- 234.
|
|
LI J Y , LI X R , ZHAO L Y , et al. Docked ship detection based on edge line analysis and aggregation channel features[J]. Acta Optical Sinica, 2019, 39 (8): 225- 234.
|
9 |
REN S Q , HE K M , ROSS G , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Tran.on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
10 |
ZOU Z X, SHI Z W. Ship detection in spaceborne optical image with SVD networks[C]//Proc.of the IEEE Trans.on Geoscience and Remote Sensing, 2016, 54(10): 5832-5845.
|
11 |
TANG T Y , ZHOU S L , DENG Z P , et al. Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining[J]. Sensors, 2017, 17 (2): 336- 348.
|
12 |
DENG Z P , SUN H , ZHOU S L , et al. Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sens-ing, 2017, 10 (8): 3652- 3664.
doi: 10.1109/JSTARS.2017.2694890
|
13 |
DENG Z P , SUN H , ZHOU S L , et al. Multi-scale object detection in remote sensing imagery with convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145, 3- 22.
doi: 10.1016/j.isprsjprs.2018.04.003
|
14 |
LIN H N , SHI Z W , ZOU Z X , et al. Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sens-ing Letters, 2017, 14 (10): 1665- 1669.
doi: 10.1109/LGRS.2017.2727515
|
15 |
LIU Z K, HU J G, WENG L B, et al. Rotated region based CNN for ship detection[C]//Proc.of the IEEE International Conference Image Process, 2017: 900-904.
|
16 |
XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proc.of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3974-3983.
|
17 |
余东行, 郭海涛, 赵传, 等. 直线特征辅助的靠岸舰船检测[J]. 测绘科学技术学报, 2019, 36 (3): 275- 280, 286.
|
|
YU D X , GUO H T , ZHAO C , et al. Detection of ship docked in harbor assisted with line feature[J]. Journal of Geomatics Science and Technology, 2019, 36 (3): 275- 280, 286.
|
18 |
JIAN D, XUE N, LONG Y, et al. Learning ROI transformer for detecting oriented objects in aerial images[C]//Proc.of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2844-2853.
|
19 |
XIAO X W, ZHOU Z Q, WANG B, et al. Accurate ship detection via paired semantic segmentation[C]//Proc.of the Chinese Control and Decision Conference, 2019: 5990-5994.
|
20 |
ZHANG Z H , GUO W W , ZHU S N , et al. Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (11): 1745- 1749.
doi: 10.1109/LGRS.2018.2856921
|
21 |
LIU W C , MA L , CHEN H , et al. Arbitrary-Oriented ship detection framework in optical remote-sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (6): 937- 941.
doi: 10.1109/LGRS.2018.2813094
|
22 |
YANG X , SUN H , SUN X , et al. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network[J]. IEEE Access, 2018, 6, 50839- 50849.
doi: 10.1109/ACCESS.2018.2869884
|
23 |
陈慧元, 刘泽宇, 郭炜炜, 等. 基于级联卷积神经网络的大场景遥感图像舰船目标快速检测方法[J]. 雷达学报, 2019, 8 (3): 413- 424.
|
|
CHEN H Y , LIU Z Y , GUO W W , et al. Fast detection of ship targets for large-scale remote sensing image based on a cascade convolutional neural network[J]. Journal of Radars, 2019, 8 (3): 413- 424.
|
24 |
仲伟峰, 郭峰, 向世明, 等. 旋转矩形区域的遥感图像舰船目标检测模型[J]. 计算机辅助设计与图形学学报, 2019, 31 (11): 1935- 1945.
|
|
ZHONG W F , GUO F , XIANG S M , et al. Ship detection in remote sensing based with rotated rectangular region[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31 (11): 1935- 1945.
|
25 |
ZHAO W C, NUNO V. Cascade R-CNN: delving into high quality object detection[C]//Proc.of the IEEE Conference Compute Vision Pattern Recognition, 2018: 6154-6162.
|
26 |
ALEXANDER N, LUC V G. Efficient non-maximum suppression[C]//Proc.of the International Conference on Pattern Recog-nition, 2006: 850-855.
|
27 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learn-ing for image recognition[C]//Proc.of the IEEE Conference Compute Vision Pattern Recognition, 2016: 770-778.
|
28 |
CANNY J . A computational approach to edge detection[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 1986, 8 (6): 679- 698.
|
29 |
RICHARD O D , PETER E H . Use of the Hough transform to detect lines and curves in pictures[J]. Communications of the ACM, 1972, 15 (1): 11- 15.
|
30 |
BALLARD D H . Generalizing the Hough transform to detect arbitrary shapes[J]. Pattern Recognition, 1981, 13 (2): 111- 122.
doi: 10.1016/0031-3203(81)90009-1
|