系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (8): 1841-1849.doi: 10.3969/j.issn.1001-506X.2020.08.26
收稿日期:
2019-12-17
出版日期:
2020-07-25
发布日期:
2020-07-27
作者简介:
刘凯 (1981-),男,副教授,硕士研究生导师,博士,主要研究方向为雷达信号处理、通信信号处理、室内定位技术和深度学习。E-mail:基金资助:
Kai LIU(), Bin ZHANG(), Qinghua HUANG()
Received:
2019-12-17
Online:
2020-07-25
Published:
2020-07-27
Supported by:
摘要:
针对传统调制识别算法在低信噪比下识别率不高的情况,提出双路卷积神经网络级联双向长短时记忆(two-way convolutional neural network cascaded bidirectional long short-term memory, TCNN-BiLSTM)网络的调制识别算法。首先,该算法并联不同尺度卷积核的卷积层,提取调制信号不同维度的特征。然后,级联BiLSTM层,对多维特征构建LSTM时间模型。最后,使用softmax分类器完成识别。仿真实验表明,所提算法结构在加性高斯白噪声和特定信道参数的瑞利衰落信道下,性能要优于基于传统特征和其他网络结构的识别算法。在特定信道参数的瑞利衰落信道下信噪比低至6 dB时,该算法对6种数字调制信号的识别率仍可达到92%以上。
中图分类号:
刘凯, 张斌, 黄青华. 基于TCNN-BiLSTM网络的调制识别算法[J]. 系统工程与电子技术, 2020, 42(8): 1841-1849.
Kai LIU, Bin ZHANG, Qinghua HUANG. Modulation recognition algorithm based on TCNN-BiLSTM[J]. Systems Engineering and Electronics, 2020, 42(8): 1841-1849.
1 |
BASAR E , WEN M , MESLEH R , et al. Index modulation techniques for next-generation wireless networks[J]. IEEE Access, 2017, 5, 16693- 16746.
doi: 10.1109/ACCESS.2017.2737528 |
2 | 谭晓衡, 褚国星, 张雪静, 等. 基于高阶累积量和小波变换的调制识别算法[J]. 系统工程与电子技术, 2018, 40 (1): 171- 177. |
TAN X H , CHU G X , ZHANG X J , et al. Modulation recognition algorithm based on high-order cumulants and wavelet transform[J]. Systems Engineering and Electronics, 2018, 40 (1): 171- 177. | |
3 | DOBRE O A , ABDI A , BARNESS Y , et al. Survey of automatic modulation classification techniques: classical approaches and new trends[J]. Institution of Engineering and Technology, 2007, 1 (2): 137- 156. |
4 |
O'SHEA T J , ROY T , CLANCY T C . Over-the-air deep lear-ning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179.
doi: 10.1109/JSTSP.2018.2797022 |
5 |
TANG B , TU Y , ZHANG Z , et al. Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks[J]. IEEE Access, 2018, 6, 15713- 15722.
doi: 10.1109/ACCESS.2018.2815741 |
6 | XU J L , SU W , ZHOU M . Likelihood-ratio approaches to automatic modulation classification[J]. IEEE Trans.on Systems, 2011, 41 (4): 455- 469. |
7 |
XU J L , SU W , ZHOU M . Software-defined radio equipped with rapid modulation recognition[J]. IEEE Trans.on Vehicular Technology, 2010, 59 (4): 1659- 1667.
doi: 10.1109/TVT.2010.2041805 |
8 |
NANDI A K , AZZOUZ E E . Algorithms for automatic modulation recognition of communication signals[J]. IEEE Trans.on Communications, 1998, 46 (4): 431- 436.
doi: 10.1109/26.664294 |
9 | 陈泽艺. 基于循环谱和高阶累积量的联合模式识别方法[J]. 电讯技术, 2015, 1 (3): 100- 104. |
CHEN Z Y . A combined modulation recognition based on cyclic spectrum and high-order cumulants[J]. Telecommunication Engineering, 2015, 1 (3): 100- 104. | |
10 |
SOLIMAN S S , HSUE S . Signal classification using statistical moments[J]. IEEE Trans.on Communications, 1992, 40 (5): 908- 916.
doi: 10.1109/26.141456 |
11 |
WU H , SAQUIB M , YUN Z . Novel automatic modulation classification using cumulant features for communications via multipath channels[J]. IEEE Trans.on Wireless Communications, 2008, 7 (8): 3098- 3105.
doi: 10.1109/TWC.2008.070015 |
12 | 刘亚冲, 唐智灵. 基于softmax回归的通信信号循环谱的多分类识别方法[J]. 现代电子技术, 2018, 41 (3): 1- 5. |
LIU Y C , TANG Z L . Softmax regression based on multi-classification recognition method of communication signal cyclic spectrum[J]. Modern Electronics Technique, 2018, 41 (3): 1- 5. | |
13 |
O'SHEA T J , HOYDIS J . An introduction to deep learning for the physical layer[J]. IEEE Trans.on Cognitive Communications and Networking, 2017, 3 (4): 563- 575.
doi: 10.1109/TCCN.2017.2758370 |
14 | MAO Q , HU F , HAO Q . Deep learning for intelligent wireless networks: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20 (4): 2595- 2621. |
15 |
LEE J H , KIM J , KIM B , et al. Robust automatic modulation classification technique for fading channels via deep neural network[J]. Entropy, 2017, 19 (9): 454.
doi: 10.3390/e19090454 |
16 |
ZHANG M , DIAO M , GUO L M . Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5, 11074- 11082.
doi: 10.1109/ACCESS.2017.2716191 |
17 | ZENG Y , ZHANG M , HAN F , et al. Spectrum analysis and convolutional neural network for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2019, 8 (3): 929- 932. |
18 |
WANG D S , ZHANG M , LI J , et al. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning[J]. Optics Express, 2017, 25 (15): 17150.
doi: 10.1364/OE.25.017150 |
19 |
WANG D , ZHANG M , LI Z , et al. Modulation format recognition and OSNR estimation using CNN based deep learning[J]. IEEE Photonics Technology Letters, 2017, 29 (19): 1667- 1670.
doi: 10.1109/LPT.2017.2742553 |
20 | O'SHEA T J , CORGAN J , CLANCY T C . Convolutional radio modulation recognition networks[J]. Engineering Applications of Neural Networks, 2016, 629, 213- 226. |
21 |
YANG C , HE Z , PENG Y , et al. Deep learning aided method for automatic modulation recognition[J]. IEEE Access, 2019, 7, 109063- 109068.
doi: 10.1109/ACCESS.2019.2933448 |
22 |
ZHANG D , DING W , ZHANG B , et al. Automatic modulation classification based on deep learning for unmanned aerial vehicles[J]. Sensors, 2018, 18 (3): 924.
doi: 10.3390/s18030924 |
23 | WEST N E, O'SHEA T J. Deep architectures for modulation recognition[C]//Proc.of the IEEE International Symposium on Dynamic Spectrum Access Networks, 2017. |
24 |
MENG F , CHEN P , WU L , et al. Automatic modulation classification: a deep learning enabled approach[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (11): 10760- 10772.
doi: 10.1109/TVT.2018.2868698 |
25 | XU J L , SU W , ZHOU M . Likelihood-ratio approaches to automatic modulation classification[J]. IEEE Trans.on Systems, 2011, 41 (4): 455- 469. |
26 | HORNIK K . Approximation capabilities of multilayer feedforward networks[J]. Neural Networks, 1991, 4 (2): 251- 257. |
27 | TARA N S, ORIOL V, SENIOR A, et al. Convolutional, long short-term memory, fully connected deep neural networks[C]// Proc.of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2015. |
28 | GOODFELLOW I , BENGI O Y , COURVILLE A . Deep lear-ning[M]. Boston: Massachusetts Institute of Technology, 2016. |
29 |
LIAO K S , TAO G H , ZHONG Y , et al. Sequential convolutional recurrent neural networks for fast automatic modulation classification[J]. Signal Processing, 2019.
doi: 10.3847/1538-4357/ab1b2a |
30 |
HOCHREITER S , SCHMIDHUBER , JURGEN . Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735 |
31 | PASCANU R, GULCEHRE C, CHO K, et al. How to construct deep recurrent neural networks[C]//Proc.of the International Conference on Learning Representations, 2014. |
32 |
YANG Y , SOLIMAN S . A suboptimal algorithm for modulation classification[J]. IEEE Trans.on Aerospace and Electronic Systems, 1997, 33 (1): 38- 45.
doi: 10.1109/7.570706 |
33 |
YANG Y , LIU C H . An asymptotic optimal algorithm for modulation classification[J]. IEEE Communications Letters, 1998, 2 (5): 117- 119.
doi: 10.1109/4234.673652 |
[1] | 宋爽, 张悦, 张琳娜, 岑翼刚, 李浥东. 基于深度学习的轻量化目标检测算法[J]. 系统工程与电子技术, 2022, 44(9): 2716-2725. |
[2] | 王彩云, 吴钇达, 王佳宁, 马璐, 赵焕玥. 基于改进的CNN和数据增强的SAR目标识别[J]. 系统工程与电子技术, 2022, 44(8): 2483-2487. |
[3] | 康颖, 赵治华, 吴灏, 李亚星, 孟进. 基于Deep SVDD的通信信号异常检测方法[J]. 系统工程与电子技术, 2022, 44(7): 2319-2328. |
[4] | 秦博伟, 蒋磊, 许华, 齐子森. 基于残差生成对抗网络的调制识别算法[J]. 系统工程与电子技术, 2022, 44(6): 2019-2026. |
[5] | 韦娟, 杨皇卫, 宁方立. 基于NMF与CNN联合优化的声学场景分类[J]. 系统工程与电子技术, 2022, 44(5): 1433-1438. |
[6] | 陈冬, 句彦伟. 基于语义分割实现的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(4): 1195-1201. |
[7] | 方伟, 王玉, 闫文君, 林冲. 基于神经网络的符号化飞行动作识别[J]. 系统工程与电子技术, 2022, 44(3): 737-745. |
[8] | 孙晶明, 虞盛康, 孙俊. 基于深度学习的HRRP识别姿态敏感性分析[J]. 系统工程与电子技术, 2022, 44(3): 802-807. |
[9] | 刘恒燕, 张立民, 闫文君, 钟兆根, 凌青, 梁晓军. 基于WBP-CNN算法的LDPC译码[J]. 系统工程与电子技术, 2022, 44(3): 1030-1035. |
[10] | 邵凯, 朱苗苗, 王光宇. 基于生成对抗与卷积神经网络的调制识别方法[J]. 系统工程与电子技术, 2022, 44(3): 1036-1043. |
[11] | 张玺, 金正猛, 姜亚琴. 融合深度图像先验的全变差图像着色算法[J]. 系统工程与电子技术, 2022, 44(2): 385-393. |
[12] | 金涛, 王晓峰, 田润澜, 张歆东. 基于改进1DCNN+TCN的雷达辐射源快速识别方法[J]. 系统工程与电子技术, 2022, 44(2): 463-469. |
[13] | 吕勤哲, 全英汇, 沙明辉, 董淑仙, 邢孟道. 基于集成深度学习的有源干扰智能分类[J]. 系统工程与电子技术, 2022, 44(12): 3595-3602. |
[14] | 高涌荇, 王旭东, 汪玲, 朱岱寅, 郭军, 孟凡旺. 基于RCNN的双极化气象雷达天气信号检测[J]. 系统工程与电子技术, 2022, 44(11): 3380-3387. |
[15] | 李永刚, 朱卫纲, 黄琼男, 李云涛, 何永华. 复杂背景下SAR图像近岸舰船目标检测[J]. 系统工程与电子技术, 2022, 44(10): 3096-3103. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||