1 |
SHIN H S, TSOURDOS A, WHITE B A, et al. UAV conflict detection and resolution for static and dynamic obstacles[C]//Proc.of the Guidance, Navigation and Control Conference and Exhibit, 2008: AIAA 2008-6521.
|
2 |
DU Y, NAN Y. Research of robot path planning based on improved artificial potential field[C]//Proc.of the International Conference on Advances in Mechanical Engineering and Industrial Informatics, 2016: 1025-1030.
|
3 |
ZHAO J, BIN Y, RUN Y. The flight navigation planning based on potential field ant colony algorithm[C]//Proc.of the International Conference on Advanced Control, Automation and Artificial Intelligence, 2018: 200-204.
|
4 |
ZHANG N, ZHANG Y, MA C, et al. Path planning of six-DOF serial robots based on improved Artificial potential field method[C]//Proc.of the IEEE International Conference on Robots and Biomimetics, 2017: 617-621.
|
5 |
OROZCO-ROSAS U , MONTIEL O , SEPULVEDA R . Mobile robot path planning using membrane evolutionary artificial field[J]. Applied Soft Computing, 2019, 77, 236- 251.
|
6 |
ZHANG W , GONG X , HAN G , et al. An improved ant colony algorithm for path planning in one scenic area with many pots[J]. IEEE Access, 2017, 5, 13260- 13269.
|
7 |
MAC T T , COPOT C , TRAN D T , et al. A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization[J]. Applied Soft Computing, 2017, 59, 68- 76.
|
8 |
YEN C T , CHENG M F . A study of fuzzy control with ant colony algorithm used in mobile robot for shortest path planning and obstacle avoidance[J]. Microsystem Technologies, 2018, 24 (1): 125- 135.
|
9 |
DARWISH A H , JOUKHADAR A , KASHKASH M . Using the bees algorithm for wheeled mobile robot path planning in an indoor dynamic environment[J]. Cogent Engineering, 2018, 5 (1): 1- 23.
|
10 |
PRANDINI M , HU J , LYGEROS J , et al. A probabilistic approach to aircraft conflict detection[J]. IEEE Trans.on Intelligent Transportation Systems, 2000, 1 (4): 199- 200.
|
11 |
聂俊岚, 张庆杰, 王艳芬. 基于加权Voronoi图的无人飞行器航迹规划[J]. 飞行力学, 2015, 33 (4): 339- 343.
|
|
NIE J L , ZHANG Q J , WANG Y F . Flight path planning of uav based on weighted voronoi diagram[J]. Flight Dynamics, 2015, 33 (4): 339- 343.
|
12 |
BILLIMORIA K D. A geometric optimization approach to aircraft conflict resolution[C]//Proc.of the 18th Applied Aerodynamics Conference, 2000: AIAA 2000-4265.
|
13 |
BILLIMORIA K D , SRIDHAR B , CHATTERJI G B , et al. Facet: future ATM concepts evaluation tool[J]. Air Traffic Control Quarterly, 2001, 9 (1): 1- 20.
|
14 |
WHITE B A, SHIN H S, TSOURDOS A. UAV obstacle avoi- dance using differential geometry concepts[C]//Proc.of the 18th World Congress, International Federation of Automatic Control, 2011: 6325-6330.
|
15 |
GESER A, MUNOZ C. A geometric approach to strategic conflict detection and resolution[C]//Proc.of the Digital Avionics Systems Conference. Piscataway, 2002.
|
16 |
ZHANG Y, ZHANG M, YU J. Realtime flight conflict detection and release based on multi-agent system[C]//Proc.of the IOP Conference Series: Earth and Environmental Science, 2018: 032053.
|
17 |
FIORINI P . Motion planning in dynamic environments using velocity obstacles[J]. International Journal of Robotics Research, 1998, 17 (7): 760- 772.
|
18 |
Durand N , BARNIER N . Does ATM need centralized coordination? Autonomous conflict resolution analysis in a constrained speed environment[J]. Air Traffic Control Quarterly, 2015, 23 (4): 710- 712.
|
19 |
杨秀霞, 张毅, 周硙硙. 一种动态不确定环境下UAV自主避障算法[J]. 系统工程与电子技术, 2017, 39 (11): 2546- 2552.
|
|
YANG X X , ZHANG Y , ZHOU W W . Automatic obstacle avoidance algorithm for UAV in dynamic uncertain environment[J]. Systems Engineering and Electronics, 2017, 39 (11): 2546- 2552.
|
20 |
王泽坤, 吴明功, 温祥西. 基于速度障碍法的飞行冲突解脱与恢复策略[J]. 北京航空航天大学学报, 2019, 45 (7): 1294- 1302.
|
|
WANG Z K , WU M G , WEN X X , et al. Flight collision resolution and recovery strategy based on velocity obstacle method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (7): 1294- 1302.
|
21 |
魏建, 李相民, 代进进. 基于速度障碍法的无人机避免机动障碍物问题[J]. 火力与指挥控制, 2016, 41 (8): 84- 92.
|
|
WEI J , LI X M , DAI J J . Avoidance of maneuvering obstacles in UAV based on speed obstacle method[J]. Firepower and command and control, 2016, 41 (8): 84- 92.
|
22 |
杨秀霞, 周硙硙, 张毅. 基于速度障碍圆弧法的UAV自主避障规划研究[J]. 系统工程与电子技术, 2017, 39 (11): 168- 176.
|
|
YANG X X , ZHOU W W , ZHANG Y . Automatic obstacle avoi- dance planning for UAV based on velocity obstacle arc method[J]. Systems Engineering and Electronics, 2017, 39 (11): 168- 176.
|
23 |
XU Y J, XIN M, WANG J N. Unmanned aerial vehicle formation flight via a hierarchical cooperative control approach[C]//Proc.of the AIAA Guidance, Navigation, and Control Confe-rence, 2011: 500-507.
|
24 |
DURAND N . Constant speed optimal reciprocal collision avoida-nce[J]. Transportation Research Part C: Emerging Technologies, 2018, 96, 366- 379.
|
25 |
全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议[J]. 航空学报, 2020, 41 (1): 023238.
|
|
QUAN Q , LI G , BAI Y Q , et al. Low altitude UAV traffic management: An introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (1): 023238.
|
26 |
蒋旭瑞, 吴明功, 温祥西, 等. 基于合作博弈的多机飞行冲突解脱策略[J]. 系统工程与电子技术, 2018, 40 (11): 2482- 2489.
|
|
JIANG X R , WU M G , WEN X X , et al. Multi-aircraft conflict resolution strategy based on cooperative game[J]. Systems engineering and electronic technology, 2018, 40 (11): 2482- 2489.
|
27 |
张玮, 马焱, 赵捍东, 等. 基于改进烟花-蚁群混合算法的智能移动体避障路径规划[J]. 控制与决策, 2019, 34 (2): 335- 343.
|
|
ZHANG W , MA Y , ZHAO H D , et al. Intelligent moving body obstacle avoidance path planning based on the improved fireworks and ant colony hybrid algorithm[J]. Control and decision, 2019, 34 (2): 335- 343.
|
28 |
任彦, 赵海波, 肖永健. 改进势场蚁群法的机器人避障及路径规划[J]. 电光与控制, 2019, 26 (11): 75- 79.
|
|
REN Y , ZHAO H B , XIAO Y J . Robot obstacle avoidance and path planning based on improved potential field ant colony method[J]. Electronics Optics & Control, 2019, 26 (11): 75- 79.
|