1 |
胡晓峰. 战争工程论——走向信息时代的战争方法学[M]. 北京: 科学出版社, 2018.
|
|
HU X F . On war engineering-war methodology towards the information age[M]. Beijing: Science Press, 2018.
|
2 |
PHAM L . UAV swarm attack:protection system alternatives for destroyers[J]. Monterey, California, USA: Navy Postgraduate School, 2012, 12, 120- 130.
|
3 |
CHUNG T H, JONES K D, DAY M A. 50 vs. 50 by 2015: swarm vs. swarm UAV live-fly competition at the naval postgraduate school[R]. Monterey, California, USA: Navy Postgraduate School, 2015, 3: 1-10.
|
4 |
张敏. 智能战争时代,谁来开火?[J]. 军事文摘, 2017, 21, 23- 26.
|
|
ZHANG M . Who is going to fire in the era of intelligent warfare?[J]. Military Digest, 2017, 21, 23- 26.
|
5 |
杨镜宇, 胡晓峰. 基于体系仿真试验床的新质作战能力评估[J]. 军事运筹与系统工程, 2016, 30 (3): 5- 9.
doi: 10.3969/j.issn.1672-8211.2016.03.001
|
|
YANG J Y , HU X F . New type operation evaluation based on SoS simulation test bed[J]. Military Operations Research and Systems Engineering, 2016, 30 (3): 5- 9.
doi: 10.3969/j.issn.1672-8211.2016.03.001
|
6 |
RABAH M , ROHAN A , TALHA M , et al. Autonomous vision-based target detection and safe landing for UAV[J]. International Journal of Control Automation and Systems, 2018, 16 (6): 3013- 3025.
doi: 10.1007/s12555-018-0017-x
|
7 |
BRYAN C , MARK G . Winning in the gray zone-using electromagnetic warfare to regain escalation dominance[J]. Washington, DC, USA: Center for Strategic and Budgetary Assessments (CSBA), 2017, 10, 30- 32.
|
8 |
HUANG S , TEO R S H . Distributed UAV loss detection and auto-replacement protocol with guaranteed properties[J]. Journal of Intelligent & Robotic Systems Theory & Applications, 2019, 93 (1/2): 303- 316.
|
9 |
JOHN K . Regaining the advantage cognitive electronic warfare[J]. The Journal of Electronic Defense, 2016, 12, 56- 63.
|
10 |
OSNER N R , DU P W P . Threat evaluation and jamming allocation[J]. IET Radar, Sonar & Navigation, 2017, 11 (3): 459- 465.
|
11 |
OSNER N, PLESSIS W. Electronic warfare training applications of decision-support systems[C]//Proc.of the Defense Operation Application, 2017: 130-135.
|
12 |
ROSALIE M, DANOY G. UAV multilevel swarms for situation management[C]//Proc.of the 16th DroNet, 2016: 49-52.
|
13 |
ZHANG S Z . Swarm intelligence applied in green logistics: a literature review[J]. Engineering Application of Artificial Intelligence, 2015, 37 (7): 16- 17.
|
14 |
DABKOWSKI M , COOK J , KEWLEY R . Swarming UAS II[J]. West Point, New York, USA: United States Military Academy, Department of Systems Engineering, 2010, 2- 6.
|
15 |
LI N , HUAI W Q , WANG S D . The solution of target assignment problem in command and control decision-making behaviour simulation[J]. Enterprise Information Systems, 2016, 11 (7): 1059- 1077.
|
16 |
LIU W , GU W , SHENG W X , et al. Decentralized multi-agent system-based cooperative frequency control for autonomous microgrids with communication constraints[J]. IEEE Trans.on Sustainable Energy, 2017, 5 (2): 446- 456.
|
17 |
ZBYNEK O. Software environment for simulation of UAV multi-agent system[C]//Proc.of the 21st International Conference on Methods and Models in Automation and Robotics, 2016: 134-139.
|
18 |
ZHU X P , LIU Z C , YANG J . Model of collaborative UAV swarm toward coordination and control mechanisms study[J]. Procedia Computer Science, 2015, 51 (5): 493- 502.
|
19 |
TIWARI R, JAIN P, BUTAIL S. Effect of leader placement on robotic swarm control[C]//Proc.of the 16th International Conference on Autonomous Agents and Multiagent Systems, 2017: 1387-1392.
|
20 |
GILES C K . A framework for integrating the development of swarm unmanned aerial system doctrine and design[J]. Monterey, California, USA: Department of Systems Engineering Naval Postgraduate School, 2017, 9- 10.
|
21 |
DOMENICO P, SALVTORE V, ROCCO A. Agent-based design for UAV mission planning[C]//Proc.of the 8th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 2013: 76-83.
|
22 |
JENSEN J S, BUCHANAN K, HUFF G H. A computer vision-based framework for the synthesis and analysis of beamforming behavior in swarming intelligent systems[C]//Proc.of the IEEE Radar Conference, 2017: 118-122.
|
23 |
WILSON O Q, RODRIGUEZ I J. Leader-follower formation for UAV robot swarm based on fuzzy logic theory[C]//Proc.of the Artificial Intelligence and Soft Computing, 2018: 740-751.
|
24 |
司光亚, 王艳正. 网络空间作战建模仿真[M]. 北京: 科学出版社, 2018.
|
|
SI G Y , WANG Y Z . Modeling and simulation of cyberspace operation[M]. Beijing: Science Press, 2018.
|
25 |
PENG G, FANG Y W, CHEN S H. A hybrid multi-objective discrete particle swarm optimization algorithm for cooperative air combat DWTA[C]//Proc.of the 11st Bio-Inspired Computing-Theories and Applications, 2016: 114-119.
|
26 |
YANG J , LIU J . Influence maximization-cost minimization in social networks based on a multiobjective discrete particle swarm optimization algorithm[J]. IEEE Access, 2018, 99 (6): 2320- 2329.
|
27 |
ALYSSA P, DANIELA R. Distributed target tracking in cluttered environments with guaranteed collision avoidance[C]//Proc.of the International Symposium on Multi-robot & Multi-agent Systems, 2017: 83-89.
|
28 |
FANG Q , XU Q . 3D route planning for UAV based on improved PSO algorithm[J]. Journal of Northwestern Polytechnical University, 2017, 35 (1): 66- 73.
|
29 |
SARA P, JULIAN B, EVA B. A multi-UAV minimum time search planner based on ACOR[C]//Proc.of the Genetic and Evolutionary Computation Conference, 2017: 35-42.
|
30 |
戴浩. 无人机系统的指挥控制[J]. 指挥与控制学报, 2016, 2 (1): 5- 8.
|
|
DAI H . Command and control for unmanned aerial vehicles[J]. Journal of Command and Control, 2016, 2 (1): 5- 8.
|