1 |
何明浩, 韩俊. 现代雷达辐射源信号分选与识别[M]. 北京: 科学出版社, 2016.
|
|
HE M H , HAN J . Signal sorting and identification of modern radar emitters[M]. Beijing: Science Press, 2016.
|
2 |
KAWALEC A, OWCZAREK R. Specific emitter identification using intrapulse data[C]//Proc.of the European Radar Conference, 2005: 249-252.
|
3 |
ZHANG G, RONG H, JIN W, et al. Radar emitter signal recognition based on resemblance coefficient features[C]//Proc.of the International Conference Rough Sets &Current Trends in Computing, 2004: 665-670.
|
4 |
ZHANG G X , JIN W D , HU L Z . Radar emitter signal recognition based on complexity features[J]. Journal of Southwest Jiaotong University, 2004, 12 (2): 116- 122.
|
5 |
ZHANG G X , RONG H N , JIN W D . Application of support vector machine to radaremitter signal recognition[J]. Journal of Southwest Jiaotong University, 2006, 41 (1): 25- 30.
|
6 |
ZHANG X L, YOU W T, GUO Q, et al. Recognition method studies for radar and communication signals based on spectral correlation[C]//Proc.of the International Symposium on Systems & Control in Aeronautics & Astronautics, 2010: 363-366.
|
7 |
韩俊, 何明浩, 朱振波, 等. 基于复杂度特征的未知雷达辐射源信号分选[J]. 电子与信息学报, 2009, 31 (11): 2552- 2556.
|
|
HAN J , HE M H , ZHU Z B , et al. Sorting unknown radar emitter signal based on complexity characteristics[J]. Journal of Electronics and Information, 2009, 31 (11): 2552- 2556.
|
8 |
LI J, YING Y. Radar signal recognition algorithm based on entropy theory[C]//Proc.of the International Conference on Systems & Informatics, 2015: 718-723.
|
9 |
KANG N X, HE M H, HAN J, et al. Radar emitter fingerprint recognition based on bispectrum and SURF feature[C]//Proc.of the CIE International Conference on Radar (RADAR), 2016.
|
10 |
CHEN T W , JIN W D , LI J . Individual feature extraction from radar emitter signals based on surrounding-line integral bispectrum[J]. Computer Engineering and Applications, 2013, 49 (8): 209- 212.
|
11 |
LIU L, MCLERNON D, GHOGHO M, et al. Micro-Doppler extraction from ballistic missile radar returns using time-frequency analysis[C]//Proc.of the International Symposium on Wireless Communication Systems, 2010: 780-784.
|
12 |
HAN J, HE M H, ZHU Y Q, et al. A novel method for sorting radar radiating-source signal based on ambiguity function[M]. IEEE Computer Society, 2009: 820-823.
|
13 |
JIN W , ZHANG G , HU L . Radar emitter signal recognition using wavelet packet transform and support vector machines[J]. Journal of Modern Transportation, 2006, 14 (1): 15- 22.
|
14 |
WANG X, HUANG G, ZHOU Z, et al. Radar emitter recognition based on the short timefourier transform and convolutional neural networks[C]//Proc.of the International Congress on Image & Signal Processing, 2018.
|
15 |
LI L, JI H, WANG L. Specific radar emitter recognition based on wavelet packet transform and probabilistic SVM[C]//Proc.of the International Conference on Information & Automation, 2009: 1308-1313.
|
16 |
LI Y B , GE J , LIN Y , et al. Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting[J]. Journal of Central South University, 2014, 21 (11): 4254- 4260.
doi: 10.1007/s11771-014-2422-5
|
17 |
CHEN T W, JIN W D, CHEN Z X. Feature extraction using wavelet transform for radar emitter signals[C]//Proc.of the WRI International Conference on Communications and Mobile Computing, 2009.
|
18 |
戚晓利, 叶绪丹, 蔡江林, 等. 基于变分模态分解与流形学习的滚动轴承故障特征提取方法[J]. 振动与冲击, 2018, 37 (23): 133- 140.
|
|
QI X L , YE X D , CAI J L , et al. Fault feature extraction method of rolling bearing based on VMD and manifold learning[J]. Journal of Vibration and Shock, 2018, 37 (23): 133- 140.
|
19 |
李华, 伍星, 刘韬, 等. 基于信息熵优化变分模态分解的滚动轴承故障特征提取[J]. 振动与冲击, 2018, 37 (23): 219- 225.
|
|
LI H , WU X , LIU T , et al. Bearing fault feature extraction based on VMD with information entropy[J]. Journal of Vibration and Shock, 2018, 37 (23): 219- 225.
|
20 |
任学平, 李攀, 王朝阁, 等. 基于改进VMD与包络导数能量算子的滚动轴承早期故障诊断[J]. 振动与冲击, 2018, 37 (15): 6- 13.
|
|
REN X P , LI P , WANG C G , et al. Early fault diagnosis of rolling bearing based on improved VMD and envelope derivative energy operator[J]. Journal of Vibration and Shock, 2018, 37 (15): 6- 13.
|
21 |
DRAGOMIRETSKIY K , ZOSSO D . Variational mode decomposition[J]. IEEE Trans.on Signal Processing, 2017, 62 (3): 531- 544.
|
22 |
郑近德, 程军圣, 杨宇. 多尺度排列熵及其在滚动轴承故障诊断中的应用[J]. 中国机械工程, 2013, (19): 2641- 2646.
doi: 10.3969/j.issn.1004-132X.2013.19.017
|
|
ZHEN J D , CHENG J S , YANG Y . Multi-scale permutation entropy and its application in fault diagnosis of rolling bearings[J]. China Mechanical Engineering, 2013, (19): 2641- 2646.
doi: 10.3969/j.issn.1004-132X.2013.19.017
|
23 |
OLOFSEN E , SLEIGH J W , DAHAN A . Permutation entropy of the electroencephalogram: ameasure of anaesthetic drug effect[J]. British Journal of Anaesthesia, 2008, 101 (6): 810- 821.
doi: 10.1093/bja/aen290
|
24 |
BANDT C , POMPE B . Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 2002, 88 (17): 174102.
doi: 10.1103/PhysRevLett.88.174102
|
25 |
YAN R , GAO R X . Approximate entropy as a diagnostic tool for machine health mon itoring[J]. Mechanical Systems & Signal Processing, 2007, 21 (2): 824- 839.
|
26 |
ALCARAZ R , RIETA J J . A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms[J]. Biomedical Signal Processing and Control, 2010, 5 (1): 1- 14.
doi: 10.1016/j.bspc.2009.11.001
|
27 |
PINCUS S M . Approximate entropy as a measure of system complexity[J]. Proceedings of the National Academy of Sciences, 1991, 88 (6): 2297- 2301.
doi: 10.1073/pnas.88.6.2297
|
28 |
张葛祥, 胡来招, 金炜东. 基于熵特征的雷达辐射源信号识别[J]. 电波科学学报, 2005, (4): 30- 35.
|
|
ZHANG G X , HU L Z , JIN W D . Rader emitter signal recognition based on entropy features[J]. Chinese Journal of Radio Science, 2005, (4): 30- 35.
|
29 |
张葛祥.雷达辐射源信号智能识别方法研究[D].成都:西南交通大学, 2005.
|
|
ZHANG G X. Research on intelligent recognition method of radar emitter signal[D]. Chengdu: Southwest Jiaotong University, 2005.
|
30 |
VAPNIK V. The nature of statistical learning theory[M]. Springer, 1995: 1-188.
|