系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (6): 1290-1300.doi: 10.3969/j.issn.1001-506X.2020.06.12
余敏建1(), 嵇慧明1,2(
), 韩其松1,*(
), 毕伟3(
)
收稿日期:
2019-08-26
出版日期:
2020-06-01
发布日期:
2020-06-01
通讯作者:
韩其松
E-mail:jhm320826@163.com;lwzy1008@163.com;1165175974@qq.com;1750553694@qq.com
作者简介:
余敏建(1963-),男,教授,硕士,主要研究方向为作战领航筹划、航空兵指挥引导自动化。E-mail:基金资助:
Minjian YU1(), Huiming JI1,2(
), Qisong HAN1,*(
), Wei BI3(
)
Received:
2019-08-26
Online:
2020-06-01
Published:
2020-06-01
Contact:
Qisong HAN
E-mail:jhm320826@163.com;lwzy1008@163.com;1165175974@qq.com;1750553694@qq.com
Supported by:
摘要:
为寻找一种满足多机空战需求的目标分配优化方法,提升空战效能,提出了一种基于合作协同进化的多机空战目标分配方法。首先,该方法基于单机空战优势,建立多机协同空战优势评价指标体系。然后,对战机间的协同相关性进行分析计算,建立多机协同空战目标分配模型。在变长度染色体遗传算法(genetic algorithm, GA)的基础上,设计了基于交叉、嫁接、分裂和拼接算子的改进合作协同进化算法,提高了模型的进化效率。最后,设计实验分别对优势评价指标体系的有效性、静态算例、动态算例和大规模无人战斗机算例进行仿真验证,并将2种模型以及4种算法的计算结果和所提算法的实验结果进行对比。仿真结果表明,改进合作协同进化算法适用于该模型计算,结果收敛稳定,亲和度值显著提升,能够优化目标分配方案,在空战中具有一定的应用意义。
中图分类号:
余敏建, 嵇慧明, 韩其松, 毕伟. 基于合作协同进化的多机空战目标分配[J]. 系统工程与电子技术, 2020, 42(6): 1290-1300.
Minjian YU, Huiming JI, Qisong HAN, Wei BI. Multi-aircraft air combat target allocation based on cooperative co-evolutionary[J]. Systems Engineering and Electronics, 2020, 42(6): 1290-1300.
表2
红方战机对蓝方战机优势矩阵"
红方战机 | 蓝方战机 | |||||
1 | 2 | 3 | 4 | 5 | 6 | |
1 | 0.263 5 | 0.552 7 | 0.174 6 | 0.102 8 | 0.331 6 | 0.230 7 |
2 | 0.173 9 | 0.401 1 | 0.650 2 | 0.314 3 | 0.117 5 | 0.202 8 |
3 | 0.432 1 | 0.201 1 | 0.112 4 | 0.060 9 | 0.181 9 | 0.104 2 |
4 | 0.318 7 | 0.295 1 | 0.208 2 | 0.120 7 | 0.264 9 | 0.213 4 |
5 | 0.034 9 | 0.210 3 | 0.327 5 | 0.532 9 | 0.112 9 | 0.212 8 |
6 | 0.055 3 | 0.273 9 | 0.351 6 | 0.635 7 | 0.146 6 | 0.284 1 |
7 | 0.214 0 | 0.379 9 | 0.334 1 | 0.189 3 | 0.202 5 | 0.264 8 |
8 | 0.130 5 | 0.204 1 | 0.400 5 | 0.258 6 | 0.152 6 | 0.223 0 |
表3
蓝方战机对红方战机威胁矩阵"
红方战机 | 蓝方战机 | |||||
1 | 2 | 3 | 4 | 5 | 6 | |
1 | 0.269 4 | 0.474 0 | 0.123 1 | 0.078 6 | 0.294 5 | 0.235 9 |
2 | 0.061 6 | 0.221 9 | 0.368 5 | 0.512 9 | 0.088 9 | 0.113 0 |
3 | 0.442 8 | 0.200 6 | 0.079 1 | 0.034 7 | 0.193 8 | 0.093 3 |
4 | 0.210 4 | 0.324 9 | 0.259 3 | 0.099 7 | 0.208 5 | 0.213 4 |
5 | 0.052 9 | 0.259 1 | 0.335 9 | 0.385 2 | 0.162 8 | 0.187 1 |
6 | 0.036 5 | 0.138 4 | 0.244 6 | 0.349 2 | 0.072 1 | 0.115 3 |
7 | 0.300 8 | 0.312 3 | 0.255 9 | 0.124 7 | 0.165 1 | 0.195 2 |
8 | 0.064 5 | 0.262 4 | 0.415 2 | 0.302 7 | 0.112 8 | 0.202 7 |
表7
4种算法目标分配方案对比"
目标分配方案 | 蓝方战机序号 | |||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
本文算法 | 3 | 16 | 17 | 1 | 2 | 6 | 14、15 | 18、19 | 20 | 21 |
改进PSO算法 | 2 | 16 | 17 | 1 | 3 | 6 | 15 | 19 | 20 | 21 |
改进ACO算法 | 3 | 16 | 17 | 1、4 | 2 | 6 | 14、15 | 19 | 20 | 21 |
改进GA | 3 | 16 | 17 | 1 | 2 | 6 | 14 | 18、19 | 20 | 21 |
目标分配方案 | 蓝方战机序号 | |||||||||
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
本文算法 | 25 | 8 | 10 | 5、11 | 9 | 23 | 13 | 12 | 24 | 36、37 |
改进PSO算法 | 18、25 | 8 | 10 | 5 | 9 | 24 | 11、12、13 | 14 | 23 | 37、38 |
改进ACO算法 | 18、25 | 8 | 10 | 5、11 | 9 | 23 | 13 | 12 | 24 | 37 |
改进GA | 25 | 8 | 10 | 5、11 | 9 | 23 | 12、13 | 15 | 24 | 36、37 |
目标分配方案 | 蓝方战机序号 | |||||||||
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
本文算法 | 38、39 | 26 | 4、7 | 27 | 30 | 22 | 28 | 31 | 32 | 33 |
改进PSO算法 | 39 | 4、26 | 7 | 27 | 31 | 22 | 28 | 30、40 | 32、41 | 33 |
改进ACO算法 | 38、39 | 26 | 7 | 27 | 30、31 | 22 | 28 | 40 | 32 | 33 |
改进GA | 38、39 | 26 | 4、7 | 27 | 30 | 22 | 28 | 31 | 32 | 33、41 |
目标分配方案 | 蓝方战机序号 | |||||||||
31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | |
本文算法 | 34 | 42 | 44 | 43 | 35 | 29、45 | 46、40、41 | 47 | 48 | 49、50 |
改进PSO算法 | 34 | 42 | 43 | 44 | 35、36 | 29、45 | 46 | 47 | 48 | 49、50 |
改进ACO算法 | 34 | 42 | 44 | 43 | 35、36 | 29、45 | 46、41 | 47 | 48 | 49、50 |
改进GA | 34 | 42 | 44 | 43 | 35 | 29、45 | 40、46 | 47 | 48、50 | 49 |
1 |
LI Z W , CHANG Y Z , KOU Y X , et al. Approach to WTA in air combat using IAFSA-IHS algorithm[J]. Journal of Systems Engineering and Electronics, 2018, 29 (3): 519- 529.
doi: 10.21629/JSEE.2018.03.09 |
2 |
MA S , ZHANG H , YANG G . Target threat level assessment based on cloud model under fuzzy and uncertain conditions in air combat simulation[J]. Aerospace Science and Technology, 2017, 67, 49- 53.
doi: 10.1016/j.ast.2017.03.033 |
3 | MOON S , OH E , SHIM D H . An integral framework of task assignment and path planning for multiple unmanned aerial vehicles in dynamic environments[J]. Journal of Intelligent & Robotic Systems, 2013, 70 (1/4): 303- 313. |
4 | PENG G, FANG Y W, CHEN S H, et al.A hybrid multiobjective discrete particle swarm optimization algorithm for cooperative air combat DWTA[C]//Proc.of the International Confe-rence on Bio-inspired Computing: Theories and Applications, 2016: 114-119. |
5 |
WANG Y , LI J , HUANG W L , et al. Dynamic weapon target assignment based on intuitionistic fuzzy entropy of discrete particle swarm[J]. China Communications, 2017, 14 (1): 169- 179.
doi: 10.1109/CC.2017.7839767 |
6 | ERKAN S, KANDEMIR M, GIGER G.Advanced task assignment for unmanned combat aerial vehicles targeting cost efficiency and survivability[C]//Proc.of the 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008: 7-10. |
7 | 谷稳.基于进化匈牙利算法的目标分配问题研究及应用[D].西安:西安电子科技大学, 2013. |
GU W.A study and application of target allocation based on evolution hungary algorithm[D].Xi'an: Xidian University, 2013. | |
8 | BAYRAK A E , POLAT F . Employment of an evolutionary heuristic to solve the target allocation problem efficiently[J]. Information Sciences, 2013, 222 (3): 675- 695. |
9 | VOLLE K, ROGERS J D, BRINK K.Scalable cooperative control algorithms for the weapon target assignment problem[C]//Proc.of the AIAA Guidance, Navigation, and Control Confe-rence, 2016.DOI: 10.2514/6.2016-2106. |
10 | 李碧.协同进化算法的研究及其应用[D].广州:华南理工大学, 2010. |
LI B.Research on coevolutionary algorithm and it's application[D].Guangzhou: South China University of Technology, 2010. | |
11 | 王华.基于相关性分析的合作型协同进化算法[D].南昌:南昌航空大学, 2017. |
WANG H.Cooperative coevolutionary algorithm based on correlation analysis[D].Nanchang: Nanchang Hangkong University, 2017. | |
12 | STANLEY K O , MIIKKULAINEN R . Competitive coevolution through evolutionary complexification[J]. Journal of Artificial Intelligence Research, 2004, 21 (1): 63- 100. |
13 | AU C K, LEUNG H F.Guided mutations in cooperative coevolutionary algorithms for unction optimization[C]//Proc.of the 19th IEEE International Conference on Tools with Artificial Intelligence, 2007: 407-414. |
14 |
DINIZ J C M , ROS D F , EDSON P D S , et al. Optimization of DP-M-QAM transmitter using cooperative coevolutionary genetic algorithm[J]. Journal of Lightwave Technology, 2018, 36 (12): 2450- 2462.
doi: 10.1109/JLT.2018.2815347 |
15 |
HU X B , ZHANG M K , ZHANG Q , et al. Co-evolutionary path optimization by ripple-spreading algorithm[J]. Transportation Research Part B:Methodological, 2017, 106, 411- 432.
doi: 10.1016/j.trb.2017.06.007 |
16 | 王凌, 沈婧楠, 王圣尧, 等. 协同进化算法研究进展[J]. 控制与决策, 2015, 2, 193- 202. |
WANG L , SHEN J N , WANG S Y , et al. Advances in co-evolutionary algorithms[J]. Control and Decision, 2015, 2, 193- 202. | |
17 |
WANG X , CHENG H , HUANG M . QoS multicast routing protocol oriented to cognitive network using competitive coevolutionary algorithm[J]. Expert Systems with Applications, 2014, 41 (10): 4513- 4528.
doi: 10.1016/j.eswa.2014.01.020 |
18 | OLIVEIRA F B D , ENAYATIFAR R , SADAEI H J , et al. A cooperative coevolutionary algorithm for the multi-depot vehicle routing problem[J]. Expert Systems with Applications, 2016, 43 (C): 117- 130. |
19 |
崔锋哲, 王秀坤, 滕弘飞. 双系统合作式协同进化算法求解不可分解函数[J]. 系统工程与电子技术, 2016, 38 (11): 2660- 2669.
doi: 10.3969/j.issn.1001-506X.2016.11.30 |
CUI F Z , WANG X K , TENG H F . Dual-system cooperative co-evolutionary algorithm for non-separable function[J]. Systems Engineering and Electronics, 2016, 38 (11): 2660- 2669.
doi: 10.3969/j.issn.1001-506X.2016.11.30 |
|
20 | QIAN P, ZHOU D, HUANG J, et al.Maneuver decision for cooperative close-range air combat based on state predicted influence diagram[C]//Proc.of the International Conference on Information & Automation, 2017: 726-731. |
21 |
肖冰松, 方洋旺, 胡诗国, 等. 一种新的超视距空战威胁评估方法[J]. 系统工程与电子技术, 2009, 31 (9): 2163- 2166.
doi: 10.3321/j.issn:1001-506X.2009.09.030 |
XIAO B S , FANG Y W , HU S G , et al. New threat assessment method in beyond-the-horizon range air combat[J]. Systems Engineering and Electronics, 2009, 31 (9): 2163- 2166.
doi: 10.3321/j.issn:1001-506X.2009.09.030 |
|
22 | 徐西蒙, 杨任农, 符颖, 等. 基于ELM_AdaBoost强预测器的空战目标威胁评估[J]. 系统工程与电子技术, 2018, 40 (8): 1760- 1768. |
XU X M , YANG R N , FU Y , et al. Target threat assessment in air combat based on ELM_ADABoost strong predictor[J]. Systems Engineering and Electronics, 2018, 40 (8): 1760- 1768. | |
23 |
史振庆, 梁晓龙, 张佳强, 等. 基于导弹攻击区的空战态势评估[J]. 火力与指挥控制, 2018, 43 (9): 89- 93, 98.
doi: 10.3969/j.issn.1002-0640.2018.09.019 |
SHI Z Q , LIANG X L , ZHANG J Q , et al. Situation assessment for air combat based on missile attack zone[J]. Fire Control & Command Control, 2018, 43 (9): 89- 93, 98.
doi: 10.3969/j.issn.1002-0640.2018.09.019 |
|
24 |
QIAN Y , LIANG X , WANG Q , et al. Local rough set:a solution to rough data analysis in big data[J]. International Journal of Approximate Reasoning, 2018, 97, 38- 63.
doi: 10.1016/j.ijar.2018.01.008 |
25 | UGAJIN T.Mutual information of excited states and relative entropy of two disjoint subsystems in CFT[J].Journal of High Energy Physics, 2017.Article number 184. |
26 | KRAWIEC K, HEYWOOD M.Solving complex problems with coevolutionary algorithms[C]//Proc.of the Conference on Genetic and Evolutionary Computation Conference Companion, 2016: 687-713. |
27 |
吴鹏, 车阿大, ChuFeng. 基于变长度染色体混沌遗传算法的专用交通道优化[J]. 运筹与管理, 2013, 22 (1): 15- 22.
doi: 10.3969/j.issn.1007-3221.2013.01.003 |
WU P , CHE A D , CHU F . Chaos genetic algorithm with variable length chromosome for lane reservation problem[J]. Operations Research and Management Science, 2013, 22 (1): 15- 22.
doi: 10.3969/j.issn.1007-3221.2013.01.003 |
|
28 |
MCANALLY K , DAVEY C , WHITE D , et al. Inference in the wild:a framework for human situation assessment and a case study of air combat[J]. Cognitive Science, 2018, 42 (7): 2181- 2204.
doi: 10.1111/cogs.12636 |
29 | 朱宝鎏, 朱荣昌, 熊笑非. 作战飞机效能评估[M]. 北京: 航空工业出版社, 2006. |
ZHU B L , ZHU R C , XIONG X F . Effectiveness evaluation of combat aircraft[M]. Beijing: Aviation Industry Press, 2006. | |
30 | GONG D W , JI X F , SUN J , et al. Interactive evolutionary algorithms with decision-maker's preferences for solving interval multi-objective optimization problems[J]. Neurocomputing, 2014, 137 (5): 241- 251. |
31 |
LOCHTEFELD D F , CIARALLO W F . Multi-objectivization via decomposition:an analysis of helper-objectives and complete decomposition[J]. European Journal of Operational Research, 2015, 243 (2): 395- 404.
doi: 10.1016/j.ejor.2014.11.041 |
32 |
CAO Y , WEI W Y , BAI Y , et al. Multi-base multi-UAV coope-rative reconnaissance path planning with genetic algorithm[J]. Cluster Computing, 2019, 22, 5175- 5184.
doi: 10.1007/s10586-017-1132-9 |
[1] | 董晨, 帅逸仙, 周金鹏, 赖鹏, 程仙垒. 网络化多传感器-多武器协同防空任务规划[J]. 系统工程与电子技术, 2022, 44(12): 3738-3746. |
[2] | 吴文海, 郭晓峰, 周思羽, 高丽. 改进差分进化算法求解武器目标分配问题[J]. 系统工程与电子技术, 2021, 43(4): 1012-1021. |
[3] | 刘家义, 王刚, 张杰, 王闯, 宋喜团. 基于改进AGD-分布式多智能体系统的目标优化分配模型[J]. 系统工程与电子技术, 2020, 42(4): 863-870. |
[4] | 奚之飞, 徐安, 寇英信, 李战武, 杨爱武. 多机协同空战机动决策流程[J]. 系统工程与电子技术, 2020, 42(2): 381-389. |
[5] | 张阳, 司光亚, 王艳正. 无人机集群网电攻击行动协同目标分配建模[J]. 系统工程与电子技术, 2019, 41(9): 2025-2033. |
[6] | 吴勇, 林文祥, 焦敬涛, 张建东. 基于归纳法的同构资源目标分配算法[J]. 系统工程与电子技术, 2019, 41(2): 342-348. |
[7] | 徐洋, 伍友利, 黄晨, 刘同鑫. 基于改进两步裁定法的内埋空空导弹作战效能评估[J]. 系统工程与电子技术, 2019, 41(12): 2763-2771. |
[8] | 褚骁庚, 马政伟, 陈行军. 面向多目标优化火力目标分配问题的前瞻式边际贪婪算法[J]. 系统工程与电子技术, 2019, 41(10): 2252-2259. |
[9] | 刘庆国, 刘新学, 夏维, 郭会军. 多个多弹头在轨武器平台的目标分配优化[J]. 系统工程与电子技术, 2018, 40(5): 1050-1056. |
[10] | 欧阳志宏, 薛磊, 丁锋. 对光电精确制导武器的区域电子防空干扰目标分配方法[J]. 系统工程与电子技术, 2018, 40(12): 2621-2628. |
[11] | 谢俊洁, 罗鹏程, 穆富岭, 王骏, 丁帅. ABMS中基于Q学习算法的空战目标分配方法[J]. 系统工程与电子技术, 2017, 39(3): 557-561. |
[12] | 王邑, 孙金标, 肖明清, 罗继勋. 基于类型2区间模糊K近邻分类器的动态武器目标分配方法研究[J]. 系统工程与电子技术, 2016, 38(6): 1314-1319. |
[13] | 陈军伟, 常天庆, 张雷, 杨国振, 马殿哲. 面向装甲分队战法运用的两阶段WTA模型[J]. 系统工程与电子技术, 2016, 38(6): 1326-1331. |
[14] | 段修生, 徐公国, 单甘霖. 基于协同Memetic自适应QPSO算法的传感器目标分配问题求解[J]. 系统工程与电子技术, 2016, 38(12): 2769-2776. |
[15] | 赵雨, 张斌, 徐安, 李洪钶. 双机协同战术对策及近似最优解[J]. 系统工程与电子技术, 2015, 37(3): 589-593. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||