系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (6): 1248-1260.doi: 10.3969/j.issn.1001-506X.2020.06.07
庞礴1,2(), 邢世其1,2(
), 代大海1,2(
), 李永祯1,2(
), 王雪松1(
)
收稿日期:
2019-07-31
出版日期:
2020-06-01
发布日期:
2020-06-01
作者简介:
庞礴(1984-),男,讲师,博士,主要研究方向为极化信息处理、极化雷达成像和SAR图像解译。E-mail:基金资助:
Bo PANG1,2(), Shiqi XING1,2(
), Dahai DAI1,2(
), Yongzhen LI1,2(
), Xuesong WANG1(
)
Received:
2019-07-31
Online:
2020-06-01
Published:
2020-06-01
Supported by:
摘要:
作为一种新兴的合成孔径雷达(synthetic aperture radar, SAR)成像体制,近年来提出的多输入多输出SAR(multiple input multiple output SAR, MIMO-SAR)通过波形分集、空间分集等,可以得到远多于实际天线数量的自由度,为突破常规SAR体制局限,实现高分辨率宽测绘带(high resolution wide swath, HRWS)成像、慢速运动目标检测、同时多模式工作等应用提供了有效的技术途径。本文概括了MIMO-SAR的国内外研究现状,剖析了MIMO-SAR的概念内涵、技术特点及关键技术,着重对其波形设计技术进行了探讨。最后,结合系统发展和实际应用,对其发展趋势进行了展望。
中图分类号:
庞礴, 邢世其, 代大海, 李永祯, 王雪松. MIMO-SAR成像技术发展与展望[J]. 系统工程与电子技术, 2020, 42(6): 1248-1260.
Bo PANG, Shiqi XING, Dahai DAI, Yongzhen LI, Xuesong WANG. Development and perspective of MIMO-SAR imaging technology[J]. Systems Engineering and Electronics, 2020, 42(6): 1248-1260.
1 | REALE D, PAUCIULLO A, FORNARO G, et al.A scatterers detection scheme in SAR tomography for reconstruction and monitoring of individual buildings[C]//Proc.of the Joint Urban Remote Sensing Event, 2011: 249-252. |
2 |
SAUER S , FERRO-FAMIL L , REIGBER A , et al. Three-dimensional imaging and scattering mechanism estimation over urban scenes using dual-baseline polarimetric InSAR observations at L-band[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (11): 4616- 4629.
doi: 10.1109/TGRS.2011.2147321 |
3 |
SUN X L , YU A X , DONG Z , et al. Three-dimensional SAR focusing via compressive sensing:the case study of angel stadium[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9 (4): 759- 763.
doi: 10.1109/LGRS.2011.2181321 |
4 |
TAO C S , CHEN S W , LI Y Z , et al. PolSAR land cover classification based on roll-invariant and selected hidden polarimetric features in the rotation domain[J]. Remote Sensing, 2017, 9 (7): 660- 680.
doi: 10.3390/rs9070660 |
5 |
FREY O , MEIER E . Analyzing tomographic SAR data of a forest with respect to frequency, polarization, and focusing technique[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (10): 3648- 3659.
doi: 10.1109/TGRS.2011.2125972 |
6 | FREY O, MORSDORF F, MEIER E.Tomographic processing of multi-baseline P-band SAR data for imaging of a forested area[C]//Proc.of the International Geoscience and Remote Sensing Symposium, 2007: 156-159. |
7 |
NANNINI M , SCHEIBER R , MOREIRA A . First 3-D reconstructions of targets hidden beneath foliage by means of polarimetric SAR tomography[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9 (1): 60- 64.
doi: 10.1109/LGRS.2011.2160329 |
8 | 庞礴, 代大海, 邢世其, 等. 前视SAR成像技术的发展和展望[J]. 系统工程与电子技术, 2013, 35 (11): 2283- 2290. |
PANG B , DAI D H , XING S Q , et al. Development and perspective of forward-looking SAR imaging technique[J]. Systems Engineering and Electronics, 2013, 35 (11): 2283- 2290. | |
9 | 张佳佳.多发多收合成孔径雷达关键技术研究[D].西安:西安电子科技大学, 2014. |
ZHANG J J.Study on key techniques of MIMO-SAR[D].Xi'an: Xidian University, 2014. | |
10 | 周伟, 刘永祥, 黎湘, 等. MIMO-SAR技术发展概况及应用浅析[J]. 雷达学报, 2014, 3 (1): 10- 18. |
ZHOU W , LIU Y X , LI X , et al. Brief analysis on the development and application of multi-input multi-output synthetic aperture radar[J]. Journal of Radars, 2014, 3 (1): 10- 18. | |
11 | 周伟.多发多收合成孔径雷达成像及动目标检测技术研究[D].长沙:国防科技大学, 2013. |
ZHOU W.Research on synthetic aperture imaging and ground moving target indication based on MIMO SAR system[D].Changsha: National University of Defense Technology, 2013. | |
12 |
MEHRA R K . Optimal input signals for parameter estimation in dynamic systems survey and new results[J]. IEEE Trans.on Automat Control, 1974, 19 (6): 753- 768.
doi: 10.1109/TAC.1974.1100701 |
13 | FOSCHINI G J . Layered space-time architecture for wireless communication in a fading environment when using multielement antennas[J]. Bell Labs Technical Journal, 1996, 1 (2): 41- 59. |
14 | 孙斌.分布式MIMO雷达目标定位与功率分配研究[D].长沙:国防科技大学, 2014. |
SUN B.Research on target localization and power allocation in widely separated MIMO radar[D].Changsha: National University of Defense Technology, 2014. | |
15 | RABIDEAU D.Ubiquitous MIMO digital array radar[C]//Proc.of the 37th Asilomar Conference on Signals, Systems, and Computers, 2003: 1057-1064. |
16 | FISHLER E, HAIMOVICH A, BLU R, et al.MIMO radar: an idea whose time has come[C]//Proc.of the Radar Confe-rence, 2004: 71-78. |
17 | ROBEY F C, COUTTS S, WEIKLE D, et al.MIMO radar theory and experimental results[C]//Proc.of the Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers, 2004: 300-304. |
18 | FISHLER E, HAIMOVICH A, BLUM R, et al.Performance of MIMO radar systems: Advantages of angular diversity[C]//Proc.of the Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers, 2004: 305-309. |
19 | 陈浩文.MIMO雷达阵列目标参数估计与系统设计研究[D].长沙:国防科技大学, 2012. |
CHEN H W.Target parameter estimations and system design for MIMO radar array[D].Changsha: National University of Defense Technology, 2012. | |
20 | ENDER J H G.MIMO-SAR[C]//Proc.of the International Radar Symposium, 2007: 580-588. |
21 | 孟藏珍, 许稼, 谭贤四, 等. MIMO-SAR成像技术发展机遇与挑战[J]. 太赫兹科学与电子信息学报, 2015, 13 (3): 423- 430. |
MENG C Z , XU J , TAN X S , et al. Development opportunities and challenges of MIMO-SAR imaging technology[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13 (3): 423- 430. | |
22 | 王杰, 丁赤飚, 梁兴东, 等. 机载同时同频MIMO-SAR系统研究概述[J]. 雷达学报, 2018, 7 (2): 220- 234. |
WANG J , DING C B , LIANG X D , et al. Research outline of airborne MIMO-SAR system with same time-frequency Coverage[J]. Journal of Radars, 2018, 7 (2): 220- 234. | |
23 | 李棉全, 马梁, 李永祯, 等. 瞬态极化雷达接收滤波器的优化设计[J]. 电子学报, 2010, 38 (12): 2915- 2919. |
LI M Q , MA L , LI Y Z , et al. Optimization of receiver filter for instantaneous polarization radar[J]. Acta Electronica Sinica, 2010, 38 (12): 2915- 2919. | |
24 |
邹博, 赖涛, 梁甸农. 基于步进频率正交信号的星载MIMO-GMTI雷达空时频处理研究[J]. 国防科技大学学报, 2010, 32 (4): 72- 77.
doi: 10.3969/j.issn.1001-2486.2010.04.013 |
ZOU B , LAI T , LIANG D N . Study of space time frequency processing for spaceborne MIMO-GMTI radar based on stepped frequency orthogonal waveform[J]. Journal of National University of Defense Technology, 2010, 32 (4): 72- 77.
doi: 10.3969/j.issn.1001-2486.2010.04.013 |
|
25 | MITTERMAYER J, MARTINEZ J M.Analysis of range ambiguity suppression in SAR by up and down chirp modulation for point and distributed targets[C]//Proc.of the International Geoscience and Remote Sensing Symposium, 2003: 4077-4079. |
26 | KHAN H A, EDWARDS D J.Doppler problems in orthogonal MIMO radars[C]//Proc.of Radar Conference, 2006: 244-247. |
27 | WANG W Q . Virtual antenna array analysis for MIMO synthetic aperture radars[J]. International Journal of Antennas and Propagation, 2012, 587276. |
28 | CASTELLANOS G, JIROUSEK M, PEICHL M.Orthogonal waveform experiments with a highly digitized radar[C]//Proc.of the European Conference on Synthetic Aperture Radar, 2012: 103-106. |
29 |
KRIEGER G , GEBERT N , MOREIRA A . Multidimensional waveform encoding:a new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Trans.on Geoscience and Remote Sensing, 2008, 46 (1): 31- 46.
doi: 10.1109/TGRS.2007.905974 |
30 | KLARE J.Digital beamforming for a 3D MIMO SAR-Improvements through frequency and waveform diversity[C]//Proc.of the International Geoscience and Remote Sensing Symposium, 2018.DOI: 10.1109/IGARSS.2008.4780016. |
31 |
KRIEGER G . MIMO-SAR:opportunities and pitfalls[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 52 (5): 2628- 2645.
doi: 10.1109/TGRS.2013.2263934 |
32 |
ALAMOUTI S . A simple transmit diversity technique for wireless communications[J]. IEEE Journal on Selected Areas in Communications, 1998, 16 (8): 1451- 1458.
doi: 10.1109/49.730453 |
33 | KIM J, OSSOWSKA A, WIESBECK W.Investigation of MIMO SAR for interferometry[C]//Proc.of the European Radar Conference, 2007: 51-54. |
34 |
KRIEGER G , GEBERT N , MOREIRA A . Multidimensional waveform encoding:a new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Trans.on Geoscience and Remote Sensing, 2008, 46 (1): 31- 46.
doi: 10.1109/TGRS.2007.905974 |
35 |
武其松, 井伟, 邢孟道, 等. 多维波形编码信号大测绘带成像[J]. 西安电子科技大学学报(自然科学版), 2009, 36 (5): 801- 806.
doi: 10.3969/j.issn.1001-2400.2009.05.008 |
WU Q S , JING W , XING M D , et al. Wide swath imaging with multidimensional waveform encoding[J]. Journal of Xidian University (Natural Science), 2009, 36 (5): 801- 806.
doi: 10.3969/j.issn.1001-2400.2009.05.008 |
|
36 |
ZOU B , DONG Z , LIANG D N . Design and performance analysis of orthogonal coding signal in MIMO SAR[J]. Science China Information Sciences, 2011, 54 (8): 1723- 1737.
doi: 10.1007/s11432-011-4284-x |
37 |
MENG C Z , XU J , XIA X G , et al. MIMO-SAR waveform separation based on inter-pulse phase modulation and range-Doppler decouple filtering[J]. Electronics Letters, 2013, 49 (6): 420- 422.
doi: 10.1049/el.2013.0016 |
38 | 林月冠.基于压缩感知的多通道雷达成像技术研究[D].北京:中国科学院大学, 2012. |
LIN G Y.Research on multichannel radar imaging technique based on compressive sensing[D].Beijing: University of Chinese Academy of Sciences, 2012. | |
39 | WANG J , LIANG X D , DING C B , et al. An improved OFDM chirp waveform used for MIMO SAR system[J]. Science China Information Sciences, 2014, 57 (6): 1- 9. |
40 | WANG J , LIANG X D , CHEN L Y , et al. A novel space-time coding scheme used for MIMO-SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (7): 1156- 1560. |
41 |
WANG W Q . Space-time coding MIMO-OFDM SAR for high-resolution imaging[J]. IEEE Trans.on Geoscience and Remote Sensing, 2011, 49 (8): 3094- 3104.
doi: 10.1109/TGRS.2011.2116030 |
42 | WANG W Q.MIMO-based SAR ground moving target detection approach[C]//Proc.of the International Conference on Intelligent Computation Technology and Automation, 2011: 608-611. |
43 |
WANG W Q , CAI J Y . MIMO SAR using chirp diverse waveform for wide-swath remote sensing[J]. IEEE Trans.on Aerospace Electronics Systems, 2012, 48 (4): 3171- 3185.
doi: 10.1109/TAES.2012.6324689 |
44 |
WANG W Q . Mitigating range ambiguities in high PRF SAR with OFDM waveform diversity[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10 (1): 101- 105.
doi: 10.1109/LGRS.2012.2193870 |
45 |
WANG W Q . MIMO SAR OFDM chirp waveform diversity design with random matrix modulation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (3): 1615- 1625.
doi: 10.1109/TGRS.2014.2346478 |
46 | 赵官华, 付耀文, 聂镭, 等. 多发多收SAR波形设计与高分辨成像技术综述[J]. 系统工程与电子技术, 2016, 38 (3): 525- 531. |
ZHAO G H , FU Y W , NIE L , et al. Review of multi-input multi-output SAR waveform design and high resolution imaging[J]. Systems Engineering and Electronics, 2016, 38 (3): 525- 531. | |
47 |
LI N , TANG J , PENG Y N . Adaptive pulse compression of MIMO radar based on GSC[J]. Electronics Letters, 2008, 44 (20): 1217- 1218.
doi: 10.1049/el:20081215 |
48 |
ROBERTS W , HE H , LI J , et al. Probing waveform synthesis and receiver filters design[J]. IEEE Signal Processing Magazine, 2010, 27 (4): 99- 112.
doi: 10.1109/MSP.2010.936724 |
49 | WANG J , ZHU K H , WANG L N , et al. A novel orthogonal waveform separation scheme for airborne MIMO-SAR systems[J]. Sensors, 2018, 18, 3580- 3591. |
50 | 井伟, 武其松, 邢孟道, 等. 多子带并发的MIMO-SAR高分辨大测绘带成像[J]. 系统仿真学报, 2008, 20 (16): 4373- 4378. |
JING W , WU Q S , XING M D , et al. Image formation of wide-swath high resolution MIMO-SAR[J]. Journal of System Simulation, 2008, 20 (16): 4373- 4378. | |
51 | 武其松, 井伟, 邢孟道, 等. MIMO-SAR大测绘带成像[J]. 电子与信息学报, 2009, 31 (4): 772- 775. |
WU Q S , JING W , XING M D , et al. Wide swath imaging with MIMO-SAR[J]. Journal of Electronics & Information Technology, 2009, 31 (4): 772- 775. | |
52 | 王力宝.多输入多输出合成孔径雷达关键技术研究[D].长沙:国防科学技术大学, 2010. |
WANG L B.Research on challenge technologies of MIMO-SAR[D].Changsha: National University of Defense Technology, 2010. | |
53 | 丁泽刚, 刘旻昆, 王岩, 等. 基于压缩感知的地基MIMO SAR近场层析成像研究[J]. 信号处理, 2019, 35 (5): 729- 740. |
DING Z G , LIU M K , WANG Y , et al. near-field ground-based MIMO SAR tomography via compressive sensing[J]. Signal Processing, 2019, 35 (5): 729- 740. | |
54 |
KONG L Y , XU X J . A MIMO-SAR tomography algorithm based on fully-polarimetric data[J]. Sensors, 2019, 19, 4839- 4850.
doi: 10.3390/s19224839 |
55 | KANTOR J, DAVIS S K.Airborne GMTI using MIMO techniques[C]//Proc.of the Radar Conference, 2010: 1344-1349. |
56 | KANTOR J M, DAVIS S K.Airborne MIMO GMTI radar[R].USA: MIT Lincoln Laboratory, 2011. |
57 | ENDER J, BRENNER A.PAMIR-a wideband phased array SAR/MTI system[C]//Proc.of the European Conference on Synthetic Aperture Radar, 2010: 157-162. |
58 |
BRENNER A , ROESSING L . Radar imaging of urban areas by means of very high-resolution SAR and interferometric SAR[J]. IEEE Trans.on Geoscience and Remote Sensing, 2008, 46 (10): 2971- 2982.
doi: 10.1109/TGRS.2008.920911 |
59 | BRENNER A R.Proof of concept for airborne SAR imaging with 5 cm resolution in X-band[C]//Proc.of the 8th European Conference on Synthetic Aperture Radar, 2010. |
60 | BRENNER A, ESSEN H, STILLA U, et al.Representation of stationary vehicles in ultra-high resolution SAR and turntable ISAR images[C]//Proc.of the European Conference on Synthetic Aperture Radar (EUSAR), 2012: 147-150. |
61 | WEIB M, ENDER J H G.A 3D imaging radar for small unmanned airplanes ARTINO[C]//Proc.of the European Radar Conference, 2005: 229-232. |
62 | WEI B M, PETERS O, ENDER J.A three dimensional SAR system on an UAV[C]//Proc.of the International Geoscience and Remote Sensing Symposium, 2007: 5315-5318. |
63 | KLARE J, BRENNER A, ENDER J.Impact of platform attitude disturbances on the 3D imaging quality of the UAV ARTINO[C]//Proc.of the European Conference on Synthetic Aperture Radar, 2008: 191-194. |
64 | KLARE J, CERUTTI-MAORI D, BRENNER A, et al.Image quality analysis of the vibrating sparse MIMO antenna array of the airborne 3D imaging radar ARTINO[C]//Proc.of the International Geoscience and Remote Sensing Symposium, 2007: 5310-5314. |
65 | STEYSKAL H, SCHINDLER J K.Distributed arrays and signal processing for the Techsat-21 space-based radar[R].USA: Airforce Labarotary, 2009. |
66 | 邹博.多发多收雷达GMTI研究[D].长沙:国防科技大学, 2011. |
ZOU B.Study of GMTI in MIMO radar[D].Changsha: National University of Defense Technology, 2011. | |
67 | AGUTTES J P.The SAR train concept: an along-track formation of SAR satellites for diluting the antenna area over N smaller satellites, while increasing performance by N[C]//Proc.of the 55th International Astronautical Congress, 2004: 919-925. |
68 |
KIM J , YOUNIS M , PRATS P , et al. First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression[J]. IEEE Trans.on Geoscience and Remote Sensing, 2013, 51 (1): 579- 590.
doi: 10.1109/TGRS.2012.2201947 |
69 |
BUCHREUSS S , SCHATTLER B , FRITZ T , et al. Ten years of TerraSAR-X operations[J]. Remote Sensing, 2018, 10 (6): 873.
doi: 10.3390/rs10060873 |
70 |
KRIEGER G , MOREIRA A , FIEDLER H , et al. TanDEM-X:a satellite formation for high-resolution SAR interferometry[J]. IEEE Trans.on Geoscience and Remote Sensing, 2007, 45 (11): 3317- 3341.
doi: 10.1109/TGRS.2007.900693 |
71 | WESSEL B, GRUBER A, GONZALEZ J H, et al.TanDEM-X: DEM calibration concept[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2008: 111-114. |
72 | GONZALEZ J H, BACHMANN M, SCHEIBER R, et al.TanDEM-X DEM calibration and processing experiments with E-SAR[C]//Proc.of the International Geoscience and Remote Sensing Symposium, 2008: 115-118. |
73 | ZINK M, KRIEGER G, FIEDLER H, et al.The TanDEM-X mission concept[C]//Proc.of the 7th European Conference on Synthetic Aperture Radar, 2008.DOI: 10.1109/IGARSS.2006.501. |
74 |
GIERULL C H , CERUTTI-MAOR D , ENDER J . Ground moving target indication with TanDEM satellite constellations[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5 (4): 710- 714.
doi: 10.1109/LGRS.2008.2004360 |
75 |
TARCHI D , OLIVERI F , SAMMARTINO P F . MIMO radar and groundbased SAR imaging systems:equivalent approaches for remote sensing[J]. IEEE Trans.on Geoscience and Remote Sensing, 2013, 51 (1): 425- 435.
doi: 10.1109/TGRS.2012.2199120 |
76 | SU Y , ZHU Y T , YU W X . Multi-channel radararray design method and algorithm[J]. Science China Information Sciences, 2010, 40 (10): 1372- 1383. |
[1] | 苗添, 曾虹程, 王贺, 陈杰. 基于迭代阈值分割的星载SAR洪水区域快速提取[J]. 系统工程与电子技术, 2022, 44(9): 2760-2768. |
[2] | 张逸群, 兰岚, 廖桂生, 许京伟. 基于二次补偿的FDA-MIMO雷达抗主瓣欺骗式干扰方法[J]. 系统工程与电子技术, 2022, 44(9): 2769-2775. |
[3] | 胡泰洋, 张晋宇, 卢海梁, 李鹏飞, 李一楠, 吕容川. 基于数据融合的分布式综合孔径微波辐射高分辨率成像算法[J]. 系统工程与电子技术, 2022, 44(8): 2403-2409. |
[4] | 王彩云, 吴钇达, 王佳宁, 马璐, 赵焕玥. 基于改进的CNN和数据增强的SAR目标识别[J]. 系统工程与电子技术, 2022, 44(8): 2483-2487. |
[5] | 廖金玲, 廖桂生, 许京伟, 兰岚. 基于EPC-MIMO编码设计的解距离模糊性能分析[J]. 系统工程与电子技术, 2022, 44(7): 2166-2174. |
[6] | 傅东宁, 廖桂生, 黄岩, 张邦杰, 王幸. 基于图拉普拉斯嵌入的合成孔径雷达时变窄带干扰抑制算法[J]. 系统工程与电子技术, 2022, 44(6): 1846-1853. |
[7] | 盖明慧, 张苏, 孙卫天, 倪育德, 杨磊. 复数兼容全变分SAR目标结构特征增强[J]. 系统工程与电子技术, 2022, 44(6): 1862-1872. |
[8] | 徐安林, 张毓, 周峰. 基于Beta过程的高分辨ISAR成像[J]. 系统工程与电子技术, 2022, 44(6): 1873-1879. |
[9] | 王宇卓, 朱圣棋, 李西敏, 兰岚. FDA MIMO双基雷达主瓣走动矫正距离模糊杂波抑制[J]. 系统工程与电子技术, 2022, 44(5): 1483-1494. |
[10] | 纪朋徽, 代大海, 邢世其, 冯德军. 密集虚假运动目标生成方法[J]. 系统工程与电子技术, 2022, 44(5): 1502-1511. |
[11] | 陈胜, 赵永波, 庞晓娇, 胡毅立, 曹成虎. 米波MIMO雷达波束空间精确最大似然算法[J]. 系统工程与电子技术, 2022, 44(5): 1520-1526. |
[12] | 禹永植, 张春红, 郝海. 非完美CSI情况下大规模MIMO系统的下行链路能效优化[J]. 系统工程与电子技术, 2022, 44(5): 1694-1700. |
[13] | 刘丰恺, 黄大荣, 郭新荣, 冯存前. 基于吕氏分布的机动目标参数化平动补偿方法[J]. 系统工程与电子技术, 2022, 44(4): 1166-1173. |
[14] | 胡艳芳, 陈伯孝, 吴传章. 基于单脉冲三维成像的抗交叉眼干扰方法[J]. 系统工程与电子技术, 2022, 44(4): 1188-1194. |
[15] | 陈冬, 句彦伟. 基于语义分割实现的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(4): 1195-1201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||