1 |
沈林成, 陈璟, 王楠. 飞行器任务规划技术综述[J]. 航空学报, 2014, 35 (3): 593- 606.
|
|
SHEN L C , CHEN J , WANG N . Overview of air vehicle mission planning techniques[J]. Acta Aeronautica et Atronautica Sinica, 2014, 35 (3): 593- 606.
|
2 |
FRANCO F, OLIVIER K, PHILIPPE M. Improving relaxation-based constrained path planning via quadratic programming[EB/OL]. https://hal.archives-ouvertes.fr/hal-01790061/document.
|
3 |
MATIUSSI R G , CARVALHO S R , FINARDI E C . Trajectory optimization using sequential convex programming with collision avoidance[J]. Journal of Control, Automation and Electrical Systems, 2018, 29 (3): 318- 327.
doi: 10.1007/s40313-018-0377-8
|
4 |
ZHANG Z , LI J X , WANG J . Sequential convex programming for nonlinear optimal control problem in UAV path planning[J]. Aerospace Science & Technology, 2018, 76, 280- 290.
|
5 |
何平川, 戴树岭. 一种改进UAV三维航迹实时规划算法[J]. 北京航空航天大学学报, 2010, 36 (10): 1248- 1251.
|
|
HE P C , DAI S L . Improved 3-D real-time trajectory algorithm for UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36 (10): 1248- 1251.
|
6 |
ZHAO Y J , ZHENG Z , YANG L . Survey on computational-intelligence-based UAV path planning[J]. Knowledge-Based Systems, 2018, 158, 54- 64.
doi: 10.1016/j.knosys.2018.05.033
|
7 |
LI G S , CHOU W S . Path planning for mobile robot using self-adaptive learning particle swarm optimization[J]. Science China (Information) Sciences, 2018, 61 (5): 052204.
doi: 10.1007/s11432-016-9115-2
|
8 |
PANDEY P , SHUKLA A , TIWARI R . Three-dimensional path planning for unmanned aerial vehicles using glowworm swarm optimization algorithm[J]. International Journal of System Assurance Engineering and Management, 2018, 9 (4): 836- 852.
doi: 10.1007/s13198-017-0663-z
|
9 |
LIU K, ZHANG M X. Path planning based on simulated annealing ant colony algorithm[C]//Proc.of the International Symposium on Computational Intelligence & Design, 2017: 461-466.
|
10 |
閤大海.差分进化算法的改进及在约束优化中的应用[D].武汉:武汉大学, 2017: 3-4.
|
|
HE D H. The improvement of differential evolution algorithm and it's application in constrained optimization[D]. Wuhan: Wuhan University, 2017: 3-4.
|
11 |
ADHIKARI D, KIM E, REZA H. A fuzzy adaptive differential evolution for multi-objective 3D UAV path optimization[C]//Proc.of the IEEE Congress on Evolutionary Computation, 2017: 2258-2265.
|
12 |
MA N, YU X, CHEN W N, et al. Fast 3D path planning based on heuristic-aided differential evolution[C]//Proc.of the Genetic & Evolutionary Computation Conference Companion, 2017: 285-286.
|
13 |
ZHOU Z, DUAN H B, LI P, et al. Chaotic differential evolution approach for 3D trajectory planning of unmanned aerial vehicle[C]//Proc.of the IEEE International Conference on Control & Automation, 2013: 368-372.
|
14 |
UPADHYAY S , RATNOO A . Smooth path planning for unmanned aerial vehicles with airspace restrictions[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (7): 1- 17.
|
15 |
TOM S A, GHADA B, RAYMOND K. Curvature continuous path generation for UAVs based on generalized expo-rational B-splines[C]//Proc.of the International Conference on Unmanned Aircraft Systems, 2018: 715-720.
|
16 |
LU L, ZONG C X, LEI X Y, et al. Fixed-wing UAV path planning in a dynamic environment via dynamic RRT algorithm[C]//Proc.of the International Conference on Mechanism and Machine Science, 2016: 271-282.
|
17 |
JUNG D , TSIOTRAS P . On-line path generation for unmanned aerial vehicles using B-spline path templates[J]. Journal of Guidance, Control, and Dynamics, 2013, 36 (6): 1642- 1653.
doi: 10.2514/1.60780
|
18 |
RAHNAMAYAN S , TIZHOOSH H R , SALAMA M M A . Opposition versus randomness in soft computing techniques[J]. Applied Soft Computing Journal, 2008, 8 (2): 906- 918.
doi: 10.1016/j.asoc.2007.07.010
|
19 |
LAI S, WANG K, CHEN B M. Dynamically feasible trajectory generation method for quadrotor unmanned vehicles with state constraints[C]//Proc.of the 36th IEEE Chinese Control Conference, 2017: 6252-6257.
|
20 |
ZHANG X , DUAN H B . An improved constrained differential evolution algorithm for unmanned aerial vehicle global route planning[J]. Applied Soft Computing Journal, 2015, 26 (C): 270- 284.
|
21 |
BESADA-PORTAS E , TORRE L D L , JESUS M , et al. Evolutionary trajectory planner for multiple UAVs in realistic scenarios[J]. IEEE Trans.on Robotics, 2010, 26 (4): 619- 634.
doi: 10.1109/TRO.2010.2048610
|
22 |
WEN N F , ZHAO L L , SU X H , et al. UAV online path planning algorithm in a low altitude dangerous environment[J]. IEEE/CAA Journal of Automatica Sinica, 2015, 2 (2): 173- 185.
doi: 10.1109/JAS.2015.7081657
|
23 |
DUAN H B , LUO Q N , YU Y X . Trophallaxis network control approach to formation flight of multiple unmanned aerial vehicles[J]. Science China Technological Sciences, 2013, 56 (5): 1066- 1074.
doi: 10.1007/s11431-013-5199-0
|
24 |
LES P, WAYNE T.非均匀有理B样条[M].赵罡,穆国旺,王拉柱,译.北京:清华大学出版社, 2010: 86-87.
|
|
LES P, WAYNE T. The NURBS book[M]. ZHAO G, MU G W, WANG L Z, trans. Beijing: Tsinghua University Press, 2010: 86-87.
|
25 |
JAN G E , SUN C C , TSAI W C , et al. An shortest path algorithm based on delaunay triangulation[J]. IEEE/ASME Trans. on Mechatronics, 2014, 19 (2): 660- 666.
doi: 10.1109/TMECH.2013.2252076
|
26 |
ELBANHAWI M , SIMIC M , JAZAR R N . Continuous path smoothing for car-like robots using B-spline curves[J]. Journal of Intelligent and Robotic Systems, 2015, 80 (1): 23- 56.
|
27 |
WANG H , WU Z J , RAHNAMAYAN S , et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences, 2011, 181, 4699- 4714.
doi: 10.1016/j.ins.2011.03.016
|
28 |
GONG W Y , CAI Z H , LIANG D W . Adaptive ranking mutation operator based differential evolution for constrained optimization[J]. IEEE Trans.on Cybernetics, 2015, 45 (4): 716- 727.
doi: 10.1109/TCYB.2014.2334692
|
29 |
ELSAYED S M , SARKER R A , ESSAM D L . Multi-operator based evolutionary algorithms for solving constrained optimization problems[M]. Amsterdam: Elsevier Science Ltd, 2011.
|
30 |
WANG Y , CAI Z X . Constrained evolutionary optimization by means of (μ+λ) differential evolution and improved adaptive trade-off model[J]. Evolutionary Computation, 2014, 19 (2): 249- 285.
|
31 |
EFREN M M, JESUS V R, COELLO C A C. Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization[C]//Proc.of the Genetic and Evolutionary Computation Conference, 2005: 25-29.
|
32 |
BECERRA R L , COELLO C A C . Cultured differential evolution for constrained optimization[J]. Computer Methods in Applied Mechanics & Engineering, 2006, 195 (33-36): 4303- 4322.
|
33 |
GAO W F , YEN G G , LIU S Y . A dual-population differential evolution with coevolution for constrained optimization[J]. IEEE Trans.on Cybernetics, 2015, 45 (5): 1094- 1107.
|