1 |
HE J L , WANG Y H , LIU H W , et al. A novel automatic PolSAR ship detection method based on superpixel-level local information measurement[J]. IEEE Geoscience & Remote Sensing Letters, 2018, 15 (3): 384- 388.
|
2 |
华夏, 王新晴, 王东, 等. 基于改进SSD的交通大场景多目标检测[J]. 光学学报, 2018, 38 (12): 1215003.
|
|
HUA X , WANG X Q , WANG D , et al. Multi-objective detection of traffic based on improved SSD[J]. Acta Optica Sinica, 2018, 38 (12): 1215003.
|
3 |
BENGIO Y , COURVILLE A , VINCENT P . Representation learning: a review and new perspectives[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2013, 35 (8): 1798- 1828.
|
4 |
谢江荣, 李范鸣, 卫红, 等. 用于空中红外目标检测的增强SSD方法[J]. 光学学报, 2019, 39 (6): 0615001.
|
|
XIE J R , LI F M , WEI H , et al. Enhancement of SSD for aerial infrared target detection[J]. Acta Optica Sinica, 2019, 39 (6): 0615001.
|
5 |
郭智, 宋萍, 张义, 等. 基于深度卷积神经网络的遥感图像飞机目标检测方法[J]. 电子与信息学报, 2018, 40 (11): 2684- 2690.
|
|
GUO Z , SONG P , ZHANG Y , et al. Aircraft detection method based on deep convolutional neural network for remote sensing images[J]. Journal of Electronics & Information Technology, 2018, 40 (11): 2684- 2690.
|
6 |
朱明明, 许悦雷, 马时平, 等. 基于特征融合与软判决的遥感图像飞机检测[J]. 光学学报, 2019, 39 (2): 71- 77.
|
|
ZHU M M , XU Y L , MA S P , et al. Airplane detection based on feature fusion and soft decision in remote sensing images[J]. Acta Optica Sinica, 2019, 39 (2): 71- 77.
|
7 |
刘星, 陈坚, 杨东方, 等. 场景耦合的空对地多任务遥感影像智能检测算法[J]. 光学学报, 2018, 38 (12): 1215008.
|
|
LIU X , CHEN J , YANG D F , et al. Scene-coupled intelligent multi-task detection algorithm for air-to-ground remote sensing image[J]. Acta Optica Sinica, 2018, 38 (12): 1215008.
|
8 |
张庆春, 佟国峰, 李勇, 等. 基于多特征融合和软投票的遥感图像河流检测[J]. 光学学报, 2018, 38 (6): 320- 326.
|
|
ZHANG Q C , TONG G F , LI Y , et al. Airplane detection based on feature fusion and soft decision in remote sensing images[J]. Acta Optica Sinica, 2018, 38 (6): 320- 326.
|
9 |
GIRSHICK R. Fast R-CNN[C]//Proc.of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
|
10 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2015, 39 (6): 1137- 1149.
|
11 |
DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proc.of the Advances in Neural Information Processing Systems, 2016: 379-387.
|
12 |
HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proc.of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
|
13 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc.of the European Conference on Computer Vision, 2016: 21-37.
|
14 |
LI Z , ZHOU F Q . FSSD: feature fusion single shot multibox detector[J]. Computer Vision and Pattern Recognition, 2018, 36 (7): 356- 366.
|
15 |
FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. [EB/OL].[2019-10-19]. https://arxiv.org/abs/1701.06659.
|
16 |
ZHANG S F, WEN L Y, BIAN X, et al. Single-shot refinement neural network for object detection[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4203-4212.
|
17 |
LIU S T, HUANG D. Receptive field block net for accurate and fast object detection[C]//Proc.of the European Conference on Computer Vision, 2018: 385-400.
|
18 |
LIN T Y , GOYAL P , GIRSHICK R , et al. Focal loss for dense object detection[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2017, 2999- 3007.
|
19 |
ZHOU P, NI B B, GENG C, et al. Scale-transferrable object detection[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 528-537.
|
20 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
21 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
|
22 |
REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. [2019-10-19]. https://arxiv.org/abs/1804.02767.
|
23 |
KANG M , JI K F , LENG X G , et al. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection[J]. Remote Sensing, 2017, 9 (8): 860.
|
24 |
李健伟, 曲长文, 彭书娟, 等. 基于生成对抗网络和线上难例挖掘的SAR图像舰船目标检测[J]. 电子与信息学报, 2019, 143- 149.
|
|
LI J J , QU C W , PENG S J , et al. Ship detection in SAR images based on generative adversarial network and online hard examples mining[J]. Journal of Electronics and Information Technology, 2019, 143- 149.
|
25 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Gene-rative adversarial nets[C]//Proc.of the Advances in Neural Information Processing Systems. Montreal, 2014, 2672-2680.
|
26 |
JIAO J , ZHANG Y , SUN H , et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6 (1): 20881- 20892.
|
27 |
胡昌华, 陈辰, 何川, 等. 基于深度卷积神经网络的SAR图像舰船小目标检测[J]. 中国惯性技术学报, 2019, (3): 397- 405, 414.
|
|
HU C H , CHEN C , HE C , et al. Detection and recognition of SAR small ship objects using deep neural network[J]. Journal of Chinese Inertial Technology, 2019, (3): 397- 405, 414.
|
28 |
李健伟, 曲长文, 彭书娟. SAR图像舰船目标联合检测与方向估计[J]. 武汉大学学报·信息科学版, 2019, 44 (6): 901- 907.
|
|
LI J W , QU C W , PENG S J . A joint SAR ship detection and azimuth estimation method[J]. Geomatics and Information Science of WuHan University, 2019, 44 (6): 901- 907.
|
29 |
魏松杰, 蒋鹏飞, 袁秋壮, 等. 深度神经网络下的SAR舰船目标检测与区分模型[J]. 西北工业大学学报, 2019, 37 (3): 587- 593.
|
|
WEI S J , JIANG P F , YUAN Q Z , et al. Detection and recognition of sar small ship objects using deep neural network[J]. Journal of Northwestern Polytechnical University, 2019, 37 (3): 587- 593.
|
30 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
|
31 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proc.of the International Conference on Machine Learning, 2015.
|
32 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proc.of the European Conference on Computer Vision, 2014: 740-755.
|